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So, having discussed spatial and temporal instabilities in isolation, we have started 

discussing about spatio-temporal instabilities, where you would see, the disturbance will 

grow both in space and time simultaneously. And, in this context, lot of work has gone 

on. One of the earlier works, where Landahl actually discussed inviscid mechanism, 

where you found that 3D disturbances can grow algebraically in time, also in space. And, 

this mechanism of algebraic growth is distinctly different from the viscous instability 

given by Orr-Sommerfeld equation. Subsequently, Henningson and Bruer and 

Haritonidis revealed also, algebraic instability that is due to a viscous mechanism, a 

coupling arising from Orr-Sommerfeld equation and the Squire equations. Squire 

equation is nothing but linearized vorticity transport equations. 
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So, suppose this is the plate that you have. Let us say, in the x direction, the flow is. So, 

this Squire equation is nothing but the linearized vorticity transport equation for omega 

y. Now, what happens here is that, there has been sporadic efforts going on and off, of 

course, all of it had started from the original observation of Markovin that, apart from the 

classical viscous or inviscid road, you could also have bypass transition. So, there were 

all this efforts, which were really looking for the bypass mechanism through which you 

can get spatio-temporal instability and in the context of the work that we talked about, 



coupling between the linear modes, given by Orr-Sommerfeld equation and Squire 

equation, Breuer and Landahl did find out that the if you go to the corresponding non-

linear stage, you could find secondary instability, that could really lead to a spectacular 

growth of disturbance into directly leading to turbulence. 
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While this things are going on, there are lots of efforts that has also gone in, in solving 

the full Navier-Stokes equation without any assumption, that we called as a direct 

numerical simulation. In one such effort, Henningson and his co-authors talked about a 

bypass transition mechanism, which do not depend on any of this previous linear 

instability mechanism. So, basically, when you are looking for any bypass mechanism, 

people were looking for algebraic growth, it has been noted. And, the reason that this is 

of interest is that, it could lead to a transient energy growth itself as the primary event, 

which will lead to basically, growth of disturbances by order of 100 or 1000, where non-

linear effects can directly come in and you would get a turbulence directly. If this 

happens, and it happens in those scenarios, where viscous instabilities are not predicted, 

then, that will be the sub-critical route as pointed out by Breuer and Kuraishi. The second 

route could be that, you are in the first critical stage, so, you already have weak 

Tollmien-Schlichting waves. 
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And now, over and above, if they have a layer of algebraic growth, so, you will have a 

compounded effect and that would lead to turbulence stoke. So, this two are the 

motivations that, people want to study algebraic growth. We have now basically, stated 

quite a few of this scenarios. They are conjectural, in the sense of theoretical projections. 

They have not been systematically studied, experimentally, in a controlled manner, so 

that, you can really say that, unambiguously that, this is exactly the mechanism by which 

things are happening. There is of course, the alternative view point that, this algebraic 

growth could occur due to the presence of modes, which are really not the normal modes 

that we obtain from the solution of Orr-Sommerfeld equation. They are basically, the 

non-normal modes. And, Schmid and Henningson are the proponents of this and they 

noted that, Orr-Sommerfeld equation modes constitute a set with respect to the adjoint of 

the Orr-Sommerfeld equation; however, each of the Eigen functions of the Orr-

Sommerfeld equation themselves, they are not orthogonal to each other, anyway. 



(Refer Slide Time: 05:51) 

 

So, they are essentially non-normal. Despite that, it has been noted that, when you have 

non-number modes, they make the system very hypersensitive to background 

disturbances. This is due to the property of the stability operator of the governing 

equation. And, some calculations have been done for channel flow and it has been shown 

that, this non-normality of this, could buoy sensitivity of the spectrum, show a 

completely a different dynamics as given by the linearized Navier-Stokes equation. 
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Now, when we take stock of this, we notice that, the transient growth that occurs as a 

resultant phenomena, that for, even for a Blasius boundary layer at Reynolds number of 

1000, you can notice that, there is a 1000 fold increase in 3D disturbance field. When 

you look at the corresponding 2D disturbance field, this growth rates are far too smaller, 

that led Trefethen and his co-authors to comment that, the essential features of this non-

modal amplification, that it applies only to 3D perturbations fields; and when you 

consider the same for 2D perturbations, this is a far weaker mechanism. 
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There are many other asymptotic studies involving this transient growth of 3D 

disturbance field, as late as this work by Zuccher in 2006 in j frame. However, what we 

are looking at that, in all of this cases, one has talked about, predominantly about 3D 

disturbance field. And, you know the legacy of 3D disturbance filed is attractive because, 

even for fully developed turbulent flow, we have a mechanism of vortex stretching 

which is present in 3D field. So, people have tried to sort of synthesize this two point of 

view and all looking for 3D disturbance field as alone. Of course, a different route that 

has been espoused by us, following our work on linearized receptivity analysis of Blasius 

boundary layer. And we find that, we do not need to talk about either spatial or temporal; 

we can perform Bromwich contour integral as stated here. They have been going on by 

various groups in our team and we found out a very curious feature of the shear layer 

instability that, when we perform a fully time dependent receptivity analysis, instead of 

performing spatial analysis for wall bounded un-separated flows, we found that, even 

though the flow, if studied in a spatially stability point of view, we find that, they are 

stable, multiple modes are present; they are all stable. 
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However, when they interact, they can lead to a kind of a spatio-temporal growth. This 

was something that was not known for more than last 20 years, but then, what is, in 

essence, happening here is that, this can also be explained from our mechanical energy 

equation that we have developed. This was done very recently, few years ago and we 

later on also showed that, this mechanical energy perspective is basically, all 



encompassing, because it comes from the Navier-Stokes equation and it can include, 

both the viscous as well as inviscid mechanism. The main term comes from the non-

linear convection term. And, the equivalents of viscous instability and the energy-based 

theory were also established. That we have talked about in recent times, and we are 

going to talk about even more; however, we note historically that, people have tried to 

study stability of flow from energy consideration. This goes back all the way to the time 

of Orr and Reynolds who actually developed an equation called Reynolds-Orr equation. 

This was further studied in and explained in Lin, Stuart’s work. You can also find it in 

Schmid and Henningson’s monograph, where an equation for disturbance kinetic energy 

was developed. 
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So, let us look at, what this could be. This is basically obtained, by looking at the Navier-

Stokes equation, if you write it in indicial notation, and then, take a dot product of it with 

respect to the velocity itself. So, I will get this term, coming from the local acceleration 

term and then, the convection terms will come in two sets; one is due to the action of the 

disturbance stress on the mean shear and another is complementary term that comes as a 

gradient transfer term here, which also includes the pressure term; a triple correlation of 

the disturbance term as well as some viscous term coming here. And, this is the usual 

pure viscous diffusion term. The reason that we write this is, because, if I look at this, 

this is nothing, but a divergence term. So, if I take a volume integral over the whole 

domain and if we go on a very large domain, where some of these disturbance quantities 



goes to 0, then, we will notice that, this term will not contribute. And, what about this 

term? This term is something like a second moment term. This is also second moment 

term, but when you are looking for the second moment term evolution equation, then, 

this is already known this is due to the mean shear. 
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So, that is like a linear term, when you look at the evolution of the second model. In 

particular, you would be interested in talking about a particular quantity, is the kinetic 

energy which is also second moment, but which is nothing, but half of u i square. So, if I 

write down the second moment matrix, so, these are the some of the trace of the matrix; 

that half E square plus v square plus W square, integrate over the whole domain; call that 

as E subscript v. So, that is your kinetic energy of the full domain. And, the previous 

equation that I wrote, we saw that, if we integrate over the whole volume, then, the left 

hand side will give us this time rate of change of Ev and the right hand side, you get this 

term, that comes from the effect of mean shear on the second moment term and this is a 

viscous term. Now, this equation is derived, subject to an assumption that, the 

disturbance field that we are talking about is localized so that, if we go very far field, it is 

gone, going to go to 0, or it could, at the most, be spatially periodic, so, it will cancel out. 

This kind of assumption actually removes any contribution coming from the 

nonlinearity. And, what we are noticing so far that, most of the time, the non-linear 

convection terms are important. Even if you start thinking of a Rayleigh’s equation, that 



was essentially the role of the non-linear convection term. Then, Orr-Sommerfeld 

equation also, we looked at the non-linear convection term, but how it exchanges energy 

with the viscous diffusion term, that thing came about. But in this equation, Reynolds-

Orr equation, you lose the non-linear term altogether. 
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So, no contribution comes from the non-linear convection term and then, what might 

happen, as a consequences, you will get a critical parameter like critical Reynolds 

number, which is abyssmally low and this was noted quite early by Lin and Stuart. And, 

they said, of course, this gives you a kind of totally unphysical results. For example, for 

Blasius boundary layer, it could give a critical Reynolds number of less than 10. So, you 

can understand that, there is something, that is totally wrong and that is due to the 

elimination of the non-linear terms. 
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If you contrast that kinetic energy equation with respect to the mechanical energy 

equation that we have developed, we have talked about in great detail, we find that, the 

non-linear contributions are very much there. We have estimated their various effects 

and this energy based receptivity analysis is all-inclusive, based on full Navier-Stokes 

equation without making any assumption. We can study it in its linear form as well as 

non-linear form. Now, we would like to relate that energy equation approach with what 

we are talking about here, in terms spatio-temporal instability, the viscous instability. 

However, we are going to study it in the context of Bromwich contour integral. One 

interesting difference between this Bromwich contour integral method with the classical 

Eigen value analysis based on Orr-Sommerfeld equation is that, this is certainly, is not 

based on normal mode analysis. So, what happens is, you can look at the effect of all the 

modes simultaneously together; this is something unique and this is very important and 

secondly, we are not making spatial or temporal approach; we are looking at it together. 
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So, this two are the major reasons and that should recommend for itself that, this is a 

good way of looking at it. So, suppose we look at a Blasius boundary layer problem with 

reference to a (()) parallel mean flow, go back to our standard solutions that we have 

studied, then, if we write in terms of the wall modes phi 1 and phi 3, the disturbance 

stream function would be written like this. And, you can very clearly note that, the 

dispersion relation is in the denominator. This is how we coupled the receptivity and the 

stability equation. In addition, this condition BC subscript w tells you, how exactly the 



shear layer has been destabilized from the wall. So, that is essentially a boundary 

condition coming from the wall. So, we can have various formalism of this quantity; that 

we have already seen.  
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So, this BC w was nothing, but your, something like the Fourier Laplace transformer of 

the disturbance stream function phi. So, that could be for any alpha, any omega, 

evaluated at y equal to 0; that is your BC w. And, you can notice that, there are the 

possibilities at the wall, you will have low slip condition and we can have a kind of a 



localized disturbance source, which is indicated by this delta function. That is one thing 

in terms of spatial localization and we also wanted to know about, it is that finite startup 

time would come through this kind of Heaviside function. 
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So, we are basically talking about some kind of a, let us say, if we talk about a flat plate 

and we position a exciter at the origin, that is what we are doing. So, we have a exciter, 

which is excited at a frequency omega naught and it is harmonic. So, that is why we are 



given E to the power minus i omega naught t and its localized nature gives us delta x and 

it is started at equal to 0. 
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So, this is something we have seen already for a unstable system and this is the picture. 

We can look at the exciter sitting in a Blasius profile. A typical profile is plotted here. 

And, what parallel flow assumption implies is that, at the location of the exciter, you find 

out what is the shear layer thickness and you consider the flow actually consists of a 

flow, that does not change with x, having the same shear layer thickness at the location 

of the exciter. This is what the parallel flow approximation means. 
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So, let us see, what we get out of this. We have already recounted what happens, when 

we look at the spatially unstable system, where we looked at the Fourier Laplace 

transform, again given by this Orr-Sommerfeld equation; and, we now try to study this 

problem again, but now, what we want to do is, not only study spatially unstable system, 

but let us also try to study, what spatially stable systems do. 
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And, this is what is shown here, with respect to receptivity studies, where we had 

positioned exciters corresponding to the various locations here, marked as A, B, C and 



D. A is what, we have already studied; that is very much inside the unstable core of this 

neutral loop; B is a stable, but it is above the neutral stable curve and D is also stable, but 

it is below and C is a subcritical point. So, these are the four points that we are going to 

study next and see, what do we get. Considering the fact that we already have seen what 

was the solution for A, we made the comment that, what we get from the full spatio-

temporal analysis looks essentially the same thing that, we would have gotten from this 

spatial analysis itself. 
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And for the point A, what we had done, we had basically lift at the Bromwich contour in 

the alpha plane. So, we have alpha r and alpha i plane and we have similarly a omega r 

and omega i plane. And, when it came to choosing the Bromwich contour integral, we 

chose a contour which is parallel to the alpha r axis and we did take it at a distance of 

something like 0.009. Why we are doing it, for obvious reason, for Reynolds number of 

1000, we see a maximum growth rate is of the order of minus 0.008. So, we wanted to 

keep it as close to the… So, there would be a maximum unstable mode somewhere here 

and so, we want to keep it like this. Now, what is the reason for it? You want to do it for 

the reason that, there would be many many modes. So, in this case, maybe there are two 

modes, in addition to this unstable mode. Then, we want the effect of all these three 

modes to be visited upon along the Bromwich contour. And when we take it as close to 

the unstable point as possible, then, we do get its maximal effect, without losing 

numerically anything. 

But if I keep the Bromwich contour further down, I will still have those effects coming in 

from all the three points, but you may lose out in terms of numerics. So, that is why, 

choosing this contours are important; you try to find out from the grid search method and 

then, polish it with the Newton-Raphson search; and then, you find out which is the most 

damaging one; and try to locate the Bromwich contour in the alpha plane as close to this 

as possible, but below this; why, because this Eigen value corresponds to downstream 

propagation. So, all the downstream propagating modes should be above the Bromwich 

contour. If I choose a Bromwich contour like this, the answer will be meaningless; 

because then, we are giving into a row that, as if the disturbance is going upstream; and 

that would be funny, because if I do it like this, with respect to this contour, this will be 

upstream propagation and what happens, this will then become a stable mode also; 

because it has a sign alpha in negative and if it is below Bromwich contour, it will be a 

stable upstream propagating mode. 

But from our Eigen value analysis, we have found out that, it is a basically downstream 

propagating mode and this is also unstable mode; that is why, we will have to choose 

this. So, basically, we understand every bid of whatever we have learnt, it is not gone to 

waste. We have to do the stability analysis; we have to do the grid search; we have to do 

the Newton-Raphson polishing; we have to identify the location of individual modes and 

then, what we could do is, we can do this Bromwich contour integral. So, Bromwich 



contour integral, that is what I kept telling you all the time, it is apriori not given to us; 

we will have to do some extra work. And, in contrast to this Bromwich contour here, 

below the real axis, here, what will you do, here we would do in such a way that, it 

would be above all possible Eigen value. Why are we doing this, because you see, this 

multiplied by E to the power i alpha x minus i omega t. So, basically, then, we need all 

the Eigen values have to be below this, otherwise, we will get to a non-causal situation. 

So, we want to satisfy the causality condition. So, we try to put it above. 

And in this case, in the omega plane, we choose it at a fairly a high value. So, this value, 

we have taken something like 0.02. That is what I promised to you that, we will discuss 

in detail. So, today we are telling you, how to choose this Bromwich contours. The 

Bromwich contours have to be chosen in alpha and omega i plane like this and then, once 

the Bromwich contours have been identified, we can solve Orr-Sommerfeld equation, 

starting all the way from one end to the other, theoretically speaking, you should like to 

go from minus infinity to plus infinity. 
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So, however, we do not want to do this for one reason that, I mean, we have a finite 

resolution; we have some delta alpha r possible, and what we have done, we have treated 

minus 20 itself as something like minus infinity. In the context of Eigen value analysis, 

what kind of alpha are we get; it is always less than about 1 or so. So, in such a case, 

compared to that, these are the distant edge. So, that is what we have figured out that, we 



can take it from minus 20 to plus 20 and in that interval, we take the number of points 

which are 2 to the power something; because you want to do a very good quality, a 50, 

so, we want to take a 50 with radix 2. 
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And, we take actually here, 2 to the power 12 points. So, let me call this as number of 

points in the alpha plane. So, that is something like 4096 points. This 4096 points 

because, 2 to the power 10 is 1024. So, it is 4096 points. We have actually also done it 

even higher, 8192 points. So, that is the kind of number of points that we take. We have 

also to take a large number of points in the omega plane and some of the calculations we 

have done were again taken from some omega range. 
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This omega range is, interestingly we have taken far too smaller, minus 1 to plus 1 and 

we have taken something like, number of points here is 2 the power 9 (( )). Well, this is 

something what we did about 5 years ago; if we were to do it today, we would be a little 

bit more, in a better situation; we may take more number of points. What happens here 

is, when I take the number of points here and I take omega max, that means what? Delta 

omega is getting fixed and the moment I fix delta omega, that fixes my t max. So, I am 



doing actually a simulation over a finite time range, that is dictated upon by 2 pi by delta 

omega. 
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So, what happens is… That means that, simulation is valid only for a short time and we 

wanted accuracy; that is why we have been forced to take it from minus 1 to plus 1. It is 

not that, we will like to take minus 1 to plus 1; one would like to take it, may be from say 

minus 20 to plus 20 in the omega plane; we have to take corresponding points. See, 

basically, you will be solving all this Orr-Sommerfeld equation that many number of 



times. Every combination of alpha and omega, you will be solving that Orr-Sommerfeld 

equation. And, we are talking about the combinations here. You can think of, this is 500 

and this is about, say 4000. So, this gives you about 2 million points. So, you have to be 

solving Orr-Sommerfeld equation 2 million times. And, we are solving the problem, in a 

range which is not too high; this is about, may be 6 to 8 delta star. 6 to 8 delta star and 

how many points do you take in there? Well, I think, those of us, who actually only do 

CFD and do not do this kind of calculations, they will be quite surprised; we take about, 

well, the results, I am going to show, where we have taken some 2400 points; we have 

also taken 4000 points. 

You need to have that kind of resolution to pick up this waves, as accurately as possible. 

So, basically, you can think of the resolution, 2400 times, about 4000 points, in the xy 

plane; that is about 8 million points, within only 8 delta star. This is interesting because, 

those of you who do CFD and you may have seen some publications, people say, we 

have done a very well resolved calculation; we have taken 20 points inside the boundary 

layer or 100 points inside the boundary layer and here we are talking of thousands and 

thousands of points. Because, boundary layer is about 3 delta star. So, here, you are 

looking at 1000 points within the boundary layer. 
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So, computing equilibrium flow is one type of activity; computing a disturbance flow is 

activity for the grownups, who have come up matured and have the confidence in solving 



the real disturbance quantity. It takes that much more effort and to get it, get your 

linearized Navier-Stokes equation, to give you a quality results, which picks up all those 

Eigen values of the associated Eigen modes correctly, you have to go through that kind 

of effort. 
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So, this is something, I just thought I will sometime explain. So, today was that day. We 

did now figure out, and as I told you that, in the results that I am going to show, these are 

basically, 2 to the power 13 points in the alpha plane and 2 to the power 9 in omega 



plane and y range is from 0 to 7. I have taken about 2400 points. And, you will see, once 

we look at the grid search method along with the Newton-Raphson search, for all this 4 

points, we get this kinds of modes or the point A, we found out, it was inside the Newton 

loop and that is indicated here with a negative value of alpha i. And, you can also see, it 

is a downstream propagating mode, because the ((group)) velocity is 0.42. The other two 

modes that you find, they are stable; wave number is the half of this unstable wave 

number. This is also same thing. They are decay rates, they are huge and the group 

velocities are of also the same kind; this is almost half u infinity, this is, almost close to 1 

infinity. All these are, what we call as the signal speed and the energy propagation speed, 

we will talk about it; we will come back to how we obtain it, but we know, how to do it; 

we have done it. 

So, the point A1 is inside the neutral loop and then, all this 3, point A is inside the 

neutral loop and has only three modes. And, we now know, because of that essential 

singularity, we can represent any arbitrary disturbance in terms of this three modes plus 

the point at infinity. We have already done that. The point B, point B was where? It was 

above the neutral loop. So, there, we find that, we again get three modes and all the three 

modes are essentially stable; this is the least stable, but still it is plus 0.01. And, the 

group velocities indicate all those three modes to be downstream propagating. And, in 

contrast, the C1 which was a subcritical point, there we find, you have only one mode, 

with alpha as 0.25; alpha i is also indicative of a stable mode and the group velocity is 

half of u infinity. The point D, which was again at the same Re equal to 1000, but little 

below the neutral curve, there we have only two modes and those two modes have alpha 

i given by this, and the vg is indicated by this. So, essentially, all the things that you are 

seeing in this table, corresponds to downstream propagating modes. 
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We will come back to this table again, when we talk about the results. Now, we have 

seen that, the point A, we do get the solution to be unstable and that is what is shown in 

the next slide. Let us take a look at the slide at the bottom, the bottom frame, that 

corresponds to it and at a time like 801, we see the solution like this. This is your 

location of the exciter and you see that, this wave is growing. This is bounded by this 

decaying front. So, as time progresses, you get this initial growth followed by this 

decaying front, this is what we notice. And for point B, we are considering a case, which 



is above the neutral curves. So, that corresponds to about 0.15. This is the solution at t 

equal to 450 and this is the solution at t equal to 801. And, what we note that, the spatial 

theory says, it is a stable mode. So, that is what we have seen; it is a damped wave, that 

is coming up. And, but that is preceded by this wave front, and that wave front, actually, 

initially grows and then, it decays. At a later time, we see this decaying front is, decaying 

wave, asymptotic wave is very much there, but this is always preceded by this. 

And what you notice, this spatio temporal front that you are noticing here, is 

continuously growing and it is not really like, what one would call as a transient; you 

know, this is, we calculated up to 800 and it continues to grow. However, you notice 

that, there is some kind of a similarity between this leading part of this and leading part 

of this; in both the cases, it just ((say)). So, this is bound to happen; this is bound to 

happen because we are looking at dispersion. So, signal takes a finite time. So, at that 

time, energy has propagated up to here, the disturbance energy. So, you see, this two 

points A and B, A corresponds to a spatially unstable point and B corresponds to a 

spatially stable point; both have a wave front like feature; for A, you may not see it, 

because it has terminated into the wave front, but for B, you can certainly, clearly 

distinguish between the decaying part and the spatio-temporal wave front part. 
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So, if I now, look at those other points, then, I could see something different, but before 

we do that, we just sum up what we have just now seen that, performing those, that 



receptivity analysis, we of course, noticed the local solution in the immediate 

neighborhood of the exciter; and additionally, we have a forerunner; this is the one, that 

precedes even the asymptotic part of the solution; and this, you can only get, when you 

do a full time analysis. If you just simply do a spatial stability analysis, or even spatial 

receptivity analysis, we have done it, remember, we called it as a signal problem. So, if 

we would have assumed that, omega only goes as omega naught, then also, we would not 

get this. So, it is not only that, will have to do the receptivity analysis, we will also have 

to do a full time dependent receptivity analysis. 

And, for spatially unstable system, one cannot see clear demarcation line between the 

asymptotic solution from the forerunner, with one merging smoothly with the other. For 

the point A, the receptivity solution is dominated by the leading Eigen modes, say we 

had three Eigen modes and the one that is growing, is the one that dictates the fate of the 

packet; not much of a effect coming from the second and third mode. Why and how I say 

that, we have the solution. We have the solution, the asymptotic part; we can do an fifty 

analysis; we can calculate its alpha r and alpha i and we can make this observation like 

what we are saying; that, a leading Eigen mode dominates everything. The second and 

third, there are no such things, because, if I do the fifty of psi versus x, then, I will get 

corresponding phi versus alpha and I will see that, there is just a peak at A1; A2 and A3 

there are no distinct dishonorable peaks. 
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Now, in contrast, when you are looking at the point B, the asymptotic solution is due to 

the first mode. And, if you do the fifty of the forerunner part, then, you will see that, the 

wave number and the decay rate, etcetera, especially the wave number, corresponds to 

the second mode. But please do not think that, it would be always like, belong to one of 

the modes, because we have seen qualitatively, the forerunner of A and B looked similar. 

So, it is not necessary that, though that forerunner is associated with any particular Eigen 

modes per se; it could be something more. 
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Effect of the third mode is not seen at all for the point B; that the leading edge of the 

asymptotic solution continues to decay at the same rate predicted by the spatial stability 

analysis; while the forerunner continues to grow spatio-temporally, although the spatial 

theory do not identify any growing mode at all. But we notice that, to get this spatio-

temporal mode, we probably need to look at solutions for other points. See, D was a 

point which was below the neutral curve and C was a point to the left of the neutral 

curve. 
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So, let us look at those two points and the corresponding receptivity analysis. And, this is 

how, we are going to see. For point C, there was only a single mode. And, that was a 

damped mode and that is what we are seeing. So, this is something. So, for C, the omega 

naught is kept the same, but Reynolds number is lowered. And, for point D, Reynolds 

number is kept same, but omega has been reduced to 0.05. See, A corresponded to 0.1, B 

corresponded to 0.15, D corresponds to 0.05 and here, what you could see that, this is 

very close to the neutral curve. So, the leading mode is damped, but it is almost near 

neutral, and that is what you are seeing; it is slowly decaying, but it has a sort of a 

leading mode here, a spatio-temporal mode. Let me just tell you about, little bit of 

historic fact. Sommerfeld student Brillouin, he was interested in investigating the effect 

of forerunner for electromagnetic wave propagation. So, if you look at the book written 

by Brillouin on waves, you will see that, he was more interested in looking at forerunners 

in electromagnetic waves and there he could not find. 

And, in electromagnetic wave, you are looking at a non-dissipative system and what we 

are studying here, is a kind of a dissipative fluid dynamical system. So, what he was 

looking for in electromagnetic waves, we can see something of that kind, for a 

hydrodynamics. So, this was something, which was really out of the blue kind of thing, 

because people did not anticipate that, this would be there. So, when we figured it out, 

our motivation was trying to explain the dynamics of spatially stable system. I told you 

that, we were interested in investigating a case, where we would have the basic dynamics 



is given by a stable system. But yet, it supports very large spatio-temporal growths, like 

what you see in a tsunami kind of a scenario; because, if you look at the ocean boundary 

layer, it is a spatially stable system. But now, if the ocean boundary layer is excited by a 

delta function like earthquake at the ocean bed, then, what happens; that was the thing 

that, we were trying to investigate. And, our investigation did show this. 

And you can very clearly see that, what people have narrated, their personal experience 

on the seashore during such events, that you see some small waves coming and then one 

or two large, big waves and then, everything quite (( )); exactly the kind of thing, that 

you are looking at here. Although, I would not stretch it any further, because this is 

Blasius boundary layer, one can do that; we leave it to our friend in oceanography to do 

all these kind of studies; if they can do such high fidelity calculations, like what we have 

been talking about here, there is a possibility that, this thing could be investigated. 
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And, the main point that we are trying to make is, essentially the following that, not only 

we will be able to establish that spatio-temporal growth and decay of such packets, 

forerunner, which originally started in Brillouin’s idea, looking for it in electromagnetic 

wave, which we have shown here for hydrodynamic waves, I think, you can also look at 

it from a directionality point of view; because this is all done in a 2D scenario. So, I am 

again, once again, giving an idea for further research. If anyone is interested, one can 

look at in a three dimensional field and then, you can also find out the group velocity and 



you will see, why a tsunami comes in direction X and does not hit this port B, this station 

B, because it would have directionality; from the group velocity, we can calculate vgx 

and vgz, and we can say, which direction it will go. So, there is a possibility of doing 

this. So, there are a lots of things. 

Let us now try to summarize, what we have seen in this figures, that, while in the earlier 

two figures, for A and B we had three modes; here C possesses single mode and D 

possess two modes; the forerunner in figure 4.3 is due to interaction of multiple stable 

modes. Well, I write this with bated breath, because, this has to be qualified with further 

studies; however, if we do not have multiple modes, as was the case for point C, we did 

not see a spatio-temporal growing wave front. Then, can we say that, having more than 

one mode is a necessary and sufficient condition for spatio-temporal growth or was it 

that, in that Reynolds number of 300, corresponding to point C, this temporal dynamics 

is such, we do not see any spatio-temporal growth wave front. So, one has to really fill 

up the gap between 1000 and 300 and see, what is the history of spatio-temporal growth 

wave front. 
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These are some of the things, that are looking straight at us and trying to encourage some 

of you into studying it and figure out what is going on here. So, I think, I have written 

this, but I will raise my hand up, if you object that, whether it is really a necessary and 

sufficient condition or not, I do not know, but at least for these four points that we have 



studied, that if we want to see spatio-temporal growing wave front, we must have more 

than one; that is what we saw. This is the alternative that we are talking about. The 

alternate possibilities is that, the spatio-temporal front for case B has wave length of B2, 

since one of the modes, but this is not necessary too, because if we superpose the spatio-

temporal front for A, B and D, which are all for the same Reynolds number, they seem to 

follow each other. So, is it something, a function of Re all alone, that is what I am 

suggesting to all of you that, there is a possibility that, one could study the dependence of 

the spatio-temporal wave front on Reynolds number; that is the problem that needs to be 

solved. 
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So, that is what I am making a conjecture here; I should be also allowed to make some 

conjecture. So, like, everybody does. So, we are saying that, this may raise a possibility 

that, the forerunner is wave packet centered around one of the unstable wave number 

corresponding to that fixed Reynolds number, for all the three points A, B and D. We do 

not know. This possibility needs to be probed by looking at multi modal solutions, at 

other Reynolds number and fix propagation properties. 
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So, if anyone of you interested in doing a PhD, there is a topic straight ahead that could 

be looked at and solved. However, we will talk about what happens when I look at the 

dynamics of a Blasius boundary layer itself, where I excite the system in the band of 

frequency, where all the individual modes are unstable; but if I excite the system with 

that band, what happens to it; that is what we are going to study. That, even though we 

are looking at all the individual modes are unstable, we will see that, the overall 

dynamics may not show any growth at all. See, this is one of the thing that, we should be 

very very critical of this normal mode analysis. Studying things in isolation has actually 

impeded our understanding of fluid mechanics more than anything else. So, that is why 

there is so much of a need, to adopt Bromwich contour integral; however tough it may 

appear to begin with, I do not think we have an option at this point in time. There is no 

enough evidence to suggest that, the growth of forerunner is due to competing groups 

associated with multiple modes, which reinforces each other at the front. 
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So, this is something that we need to be looking at and as I told you, just for a record, we 

look at the book by Brillouin. He was looking at problem of electrodynamics, in search 

of forerunners; the propagation speed of signals; this kind of disturbance propagation has 

been given in a different name. You know, we have been talking about group velocity, 

we are following Rayleigh. Rayleigh was the first person, who actually, originally 

followed Hamilton’s idea. If you look at even older papers by Hamilton, Hamilton talked 

about interaction of multiple modes. But Rayleigh did put it in a firm foundation. 

Sommerfeld called it as some kind of a signal velocity and Brillouin was the one who 

used to talk about energy propagation speed; that is why, in the table you saw that, we 

had made three columns - group velocity, signal speed and energy propagation speed. 

So, we want to basically, figure out what this is. And, Brillouin made a sort of a 

prophetic statement that, if you are looking at non-dissipative system, all these three will 

be identical. 

But if you are looking at a dissipative system, it may not be of… How therefore, 

problems of electrodynamics, this forerunner is very weak and it has been extremely 

been difficult to trace it for electromagnetic waves in stable system; however, below also 

noted that, if you are trying to look for it, you will only look for it, for the condition 

where group velocity actually attain some kind of a minima. So, you will have a 

bandwidth. 
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And if you plot the group velocity versus the, say wave number range, then, if you have 

a minimum of the group velocity in that range, it will be around there, you should get to 

see some kind of a high amplitude; we have not pursued it. So, it is just for your 

consumption, just lay out this fact. We look at dissipative system for fluid dynamics and 

we take the queue from Brillouin and say that, this velocity can differ considerably, 

because, we have both stable and unstable modes staying side by side. So, I think, I will 

stop here and we will continue our discussion of it in the next class, where we will define 

what is the difference between the group velocity and signal speed and the energy speed, 

how these things haven to be obtained, we will talk about that. 

 


