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We were talking about instability that is noted on the attachment-line of a swept wing 

and this is the schematic. If you look at a top view it would look like this. The oncoming 

free-stream Q infinity subtends an angle alpha, drawn with the normal along which we 

have the U infinity. The projection of Q infinity along the normal to the leading edge is 

U infinity and there is a span-wise component W infinity going there. So, this is a plan 

view. In this plan view also, we show, how the streamline which is outside the shear 

layer looks like. So, external streamline refers to a streamline which is outside the shear 

layer. So, what you notice that, the component, the U component that we call as the 

stream-wise component, and the W that we will call as the cross-flow component have 

different relationship at different height. 

So, what happens is, as a consequence, you have streamlines which may be aligned in 

this direction at the wall and as you go outside, you can see the cross-flow component 



keeps changing and that actually skews or twists the streamline. And, the external 

streamline is the one, where the W component has come to 0 and U has reached its free-

stream value. So, from that point onward, your streamline will be the same, but inside the 

shear layer, it is all twisted. That is what to we are trying to show you here, by showing a 

asymmetric projection of the velocity profile over the wing. Now, what happens along 

the leading edge, that is what we call as the attachment-line. So, this is your attachment-

line and you draw a plane normal to that, along the attachment-line, is called the 

attachment-line plane. And in that attachment-line plane, what happens, you have a flow 

in the span-wise direction.  
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So, since that is the flow direction, so, we call that itself as U and it has no other 

component. And, this problem that I was telling you about also, when performed 

experimentally, what you actually end up doing is, you have, let us say a wind-tunnel, 

wall like this and you fit in a kind of a shuttering, which will connect from wall to wall. 

The idea is, not to have any of these tip vortices and which will affect the flow in the 

near vicinity, but you do it in a wall-to-wall fashion. And then, of course, you will have 

these vertical structures forming there; that sort of migrates along the span-wise 

direction. 

You would also have similar such vertical structure created here, corner vortices here, 

but because the oncoming flow is the... So, this is what we are drawing there as Q 



infinity. And that, we split it into U infinity and W infinity, that is what we are talking 

about. So, essentially, Q infinity is like this. So, that is composed of these two 

components. So, this component is what we are calling as U infinity and this, we call it 

as W infinity and this is your k infinity. So, what happens, this is far away from the 

wind, but in the attachment-line plane, what happens is, you do not have this normal 

component; the flow is in the span-wise direction. 
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So, that is what we are calling, that itself as the stream-wise component. So, the flow that 

is in the span-wise direction is the flow direction. So, that is why, there is a kind of an 

exchange of access system; that is why, you would notice that, we have identified that 

axis as x 1 and z. So, why x 1, x 1 is the external streamline fixed coordinate system. So, 

viewed from external streamline, that would be the x 1 direction and from the wing fix 

direction, that would be your z direction; because, that is the span direction. So, 

basically, it is a kind of a description that we are talking about, that viewed from a 

geometric perspective, that is the span-wise direction z and viewed from the flow 

direction, that is actually stream-wise direction.  

So, that is why, you notice that, we have called it simultaneously as x 1 and z. Now, we 

have to be very clear about this and you can understand, then, from the flow perspective, 

this is the, because the flow is in this direction, so, this will be your span-wise direction. 

So, this we are writing as z 1, but from the geometric perspective, it is the x direction. 



So, that is what I thought, I will spend a little extra time and explain to you that, the 

subtle aspect of it. Now that we understand this, it is pretty much clear what we are 

talking about. So, we have a plane, attachment-line plane. That is where the flow is from 

here to here, in this direction. And, over that, the flow wraps up on top and below that 

attachment-line, flow wraps on the bottom. So, that is your visual picture. Now, let us 

see, what happens to this. 
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I told you that, it was once again Prandtl, who always does things before everybody 

thinks. He suggested that, we can look at the governing Navier-Stokes equation and then, 

consider the flow to be occurring over a swept wing, but whose span is infinite. So, that 

means what? You have still, a flow in the geometric perspective in the z direction, but 

the variation with z is 0; that is your meaning of infinite swept wing. So, you will have a 

z component of the velocity, but the derivative with respect to z will all go to 0. So, that 

is your infinite swept wing assumption. So, Prandtl said, let us consider the flow, idealize 

like this, and then see, what happens to our equilibrium flow itself. So, if you look at it 

this way… So, z axis is parallel to the generator of the body, because that is what it is, 

like a body of revolution kind of a thing, such that, all flow derivatives with respect to z 

can be omitted in the governing differential equation. So, this is your x momentum 

equation. 



So, this is, we are writing in wing fixed coordinate system. So, we are writing it in the 

wing fixed coordinate system. u is the velocity component in the x direction; v is the 

velocity in the y direction and then, what is this term; you can recognize it; this is the 

pressure gradient term in the x direction; and this is your viscous diffusion term. What 

have we done here, of course, we have taken a boundary layer approximation so that, the 

stream-wise gradient is, diffusion is negligible compared to wall normal diffusion. And 

what happens to the z direction? Of course, because of infinite swept assumption, that 

term is 0. If del u del z is 0, all its derivatives also be 0. 

So, second derivative automatically falls off. So, that is your x momentum equation. 

Look at, now, your, you do not have to do anything about the y momentum equation, 

from the boundary layer equation, we know that. And, look at, now, the span-wise 

component, the z component. So, you have u del W del x plus v del W del y equal to nu 

times the wall normal diffusion of W. So, this is ok. So, there is no applied pressure 

gradient in that direction. Whatever it is there, it is in the stream-wise direction. And, this 

is your continuity and you can very easily see that, del W del z is 0 because of infinite 

swept wing assumption. So, this is the equation, and now, let us goes ahead, and try to 

simplify it. 
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Now, before you do that, note down the boundary condition at the wall, all the three 

velocity components are 0, and when you go far away from the wall, outside the shear 



layer, u would approach capital U and w will approach capital W. And, now, if I now try 

to solve those equations, those two momentum and the continuity equations, subject to 

these two boundary conditions, to get the equilibrium state, Cooke actually thought of 

extending what Falkner and Skan had already done for flow with pressure gradient. We 

have talked about Falkner-Skan profile. So, Cooke basically, extended that same idea, 

that here, we are talking about an infinite-yawed wedge. 

So, if the flow is like this, so, you have a wedge here, but that is infinite in this direction; 

so that, if you are looking at 0 angle of attack here. So, basically, the wing itself, that 

attachment-line plane itself, I am considering there is a wedge there; and the flow is 

coming right at the leading edge of the wedge. And then, we can prescribe the variation 

of U like what you do in Falkner-Skan profile, it goes as x to the power m. And, what (( 

)), the quantity, because, we are talking about infinite sweep. So, we have a W 

component, but it does not vary with z. So, that is why, you have the other vary there, W 

was equal to constant. So, from now on, what we would be talking about, that we will be 

talking about extension of Falkner-Skan weight solution by this idea of Cooke, as 

Falkner-Skan-Cooke profile.  
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So, we will be talking about Falkner-Skan-Cooke profile. So, we are basically looking 

for the description of this Falkner-Skan-Cooke profile. 
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So, what we do is, we go through that same exercise; we define, stretch the wall normal 

direction by introducing eta; m is some kind of a pressure gradient parameter, like what 

we have done, remember; and would be something like x by U e d U e d x; that is your 

pressure gradient parameter. So, that is what it comes here, and you scale it by this kind 

of r e by square root of x kind of a thing and it is the y coordinate that is stretched; so, 

you are stretching that way. You also define a stream function. What is the idea here, of 

course, when you introduce a stream function, then, in the x y plane, you do not need to 

worry about mass conservation; it is automatically satisfied; existence of psi will give 

you that. And, we are talking about a span-wise component of the velocity, because, 

outside the shear layer, W is a constant, but inside what happens, it will vary; that is why, 

we saw the streamline skews. So, we introduce another non-dimensional dependent 

variable g of eta and this psi, we define it with respect to a non-dimensional stream 

function f of eta. So, basically, we are trying to depict the flow in terms of two quantities, 

a stream function, which is given in terms of its non-dimensional value f and a non-

dimensional span-wise velocity component, which is given in terms of g eta. 
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So, this is how we could go about describing the flow in terms of two new dependant 

variable. We will substitute those things, those two definitions of psi, f and g and plug it 

in the governing equation that we have just now seen. What you would find that, the 

momentum equation will yield this one, the x momentum equation will yield this first 

equation and this is what something you have already seen. This is exactly like what we 

have obtained for Falkner-Skan profile also. And, beta is the combination of this term, 2 

m by m plus 1; that appears there. It is a non-linear equation, but in the leading term, it is 

a linear and the z momentum equation gives you this equation. 

So, what you notice, of course, directly from here that, f can be solved independent of g. 

So, first, you will be solving for f, by solving 10. Once you have the f, we can plug it in 

in 11 to get g. So, this should possibly help you in defining the flow field. So, what 

happens is, you need to solve these two equations. It is our ODEs. So, it is a third order 

ODE. So, you require three conditions for f and second order ODE in g will require two 

conditions for g. This five conditions are obtained through this. At the wall, you have a 

psi equal to 0, psi prime equal to 0 with respect to x and y; they are 0s. So, that translates 

into f and f prime equal to 0. And similarly, the W component is 0. That gives you 

directly, g equal to 0. And then, when you go to the edge of shear layer, what happens is, 

the stream-wise component reaches the value of 1; the span-wise component reaches a 

constant value. That is it. So, both of them, f prime and g, approaches 1. 
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So, now, we do allow little bit of jugglery, because what have we gotten so far, we have 

gotten the mean flow, before we solve those two equations; that will define our capital U 

and capital W. Now, if you go back, go back and see, what is this theta naught; theta 

naught, we defined it as the angle between the external streamline and normal to the 

leading edge. So, let us go back and take a look. 
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So, that is what it is. If you look at the plan view, if you look at the plan view, so, this is 

your x axis, wing fixed x axis and this is the projection of the external streamline on the 



plan view. So, this theta naught is the angle between the two. So, if I do that… So, I have 

a component of, x component, that I am calling it as capital U of y; then I have a 

component that is capital W of y; and I am trying to find out the component along x 1, y 

1 and z 1. So, this is essentially the whole idea. So, I want to get it in the wing fixed 

coordinate system. So, that is what we are doing here. 
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So, we have obtained, u and capital U and capital W. We know what this angle theta 

naught is, then, we can obtain this component in the external streamline fixed coordinate 

system. This is what we get. And, you can realize that y and y 1 are the same, because 

they are perpendicular to a wall. So, you do not have to distinguish between the two. 

And, you have obtained the velocity profile. And, what happens, along the attachment-

line, on the leading edge of an infinite swept wing, we know U e, the edge velocity 

happens to be proportional to x itself. This is, this is exactly like what we did for 

stagnation profile, if you recall. Well, you may have done it in some earlier courses. I did 

not, did I do it? I think we did not do it in this course, the stagnation point profile, the 

Hyman’s flow; we have not done it. 

But if we look at Hyman’s flow, that is what you would notice that, there would be, U e 

would be equal to k x and v U would be some k y with a minus sign. But in this case, 

what happens, you do not have a y component there. So, you have a, this, and this is 

directly proportional to the x component; whereas, W e is equal to W infinity itself. So, 



because, once you are outside, the flow does not change any more; that is the definition 

of infinite swept condition; that W e will remain same. There is no additional span-wise 

pressure gradient; that is, that is the whole idea. 
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So, once we have this edge condition provided for U e and W e, we could now think of 

the attachment-line prime, that it divides the flow into two; one part follows the upper 

surface; the other follows the lower surface, and if I now focus my attention on external 

streamline coordinate system, x 1 now coincides with the attachment-line; that is what 

we have discussed; that x 1 and z are same. That is what we are saying. And, the 

boundary layer edge velocity, in this external streamline coordinate system would be 

given by this. U 1 e should be equal to Q infinity sine phi; what is phi? Phi is sweep 

angle; phi is the sweep angle. What happens to this? This has to be equal to 0, because, 

that, you are in the streamline direction.  

So, you cannot have any other component; flow is along the streamline. So, that is what 

you have there. And, there is no cross component; that is it. And, the angle between the 

external streamline and normal to the leading edge is given by tan inverse of W e by U e. 

So, this is again, going back to your wing fixed coordinates system. So, the wing fixed 

coordinate system component defines your theta naught. Now, so, you understand U 1 e 

means the edge velocity in the external streamline fixed coordinate system. W 1 e is 

external streamline fixed coordinate system and that is by definition has to be equal to 0. 



But that is not necessarily the case, when you look at, in the wing fixed coordinate 

system. There, you would have a stream-wise component and you would have a span-

wise component. So, this is how we are going to define the flow field. 
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So, what happens? We have written down that expression for U 1. If you recall, let us go 

back there. Here. So, if I know, these two quantity, cos theta naught and sin theta naught, 

then you are done. 
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What is it, we have already seen? Tan theta naught is W e by U e. So, what will be cos 

theta naught?   
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So, we will substitute it that, but what about U? That also we can define in terms of f. 

We have the definition of psi. So, we can differentiate it with respect to y to get U. So, 

this will be substituted in terms of f prime cos theta naught; we will use this expression, 

sin theta naught we have it, and this also, we can define it in terms of g. 
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So, if we know this, then, there is no problem, because then, we can go ahead and we are 

going to get this. You can very clearly see that, U of y is nothing, but f prime times U e, 

because it is, U by U e is equal to f prime. Then, I have this cos theta naught and W is 

nothing, but g times W. And, if I define U 1 e as this, that is that; because, once you have 

the wing fixed component… And now, you want to go to the external streamline fix 

component. That only has U 1 e component. W 1 e by definition is 0; so it will be equal 

to this. So, let us substitute all of that here; f prime, cos theta naught, U 1 e; I have just 

written it like this. And, this will give me this component f prime cos square theta naught 

plus g sin square theta naught. At the same way, you have the other expression that is 

given for W 1 component. If I non-dimensionalize with respect to U 1 e, then, I get this. 

So, you can realize that, we will solve those two ODEs. So, we will get f and g 

distribution and from those information plus U e and W e information, we will have this 

expression for theta naught and we will get this. 
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So, once we have the flow direction components, then, we are ready to define the 

equilibrium flow. That is what we want to do. Now, look at the attachment-line itself. In 

the attachment-line itself what have you seen? 
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We saw U e is k x, whereas, here we said that, U e goes as x to the power m; that was the 

Falkner-Skan idea and that was extended by Cooke like this. So, what you find here, m is 

equal to 1. If m is equal to 1, what was beta? Beta was 2 m divided by m plus 1. 
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So, if m is equal to 1, beta is also equal to 1, that is what we are saying. And, what about 

the angle? What is the angle between external streamline and the normal to the leading 

edge? It is 90 degrees, because a flow has turned. You see, the one part is going up and 

another part is going down and in this plane, it is going the span-wise direction; that is 



why x 1 and z are synonymous; that implies theta naught equal to pi by 2. So, what 

happens is, we can use this information in the previous slide, what we have seen the 

expression, what will we get? The stream-wise velocity is just simply given by g. And, 

the cross-flow profile is equal to 0. So, what happens? This is the magic of Prandtl. He 

has shown that, the flow is two dimensional, because you have only one component of 

velocity; the other component is identically equal to 0. So, that, that is what it is. Of 

course, you see it, because the W 1 by U 1 e is that f prime minus g into sin theta naught 

cos theta naught. 
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So, what happens? For 90 degree of course, this goes to 0, that is what we have 

established. So, W 1 is 0. What about U 1? You will get this part go away, only this part 

will be there. So, what happens is, you will have a two dimensional flow on the 

attachment-line plane, but you will be solving those two ODEs that we have seen 

already. First, we will be solving for f and f prime, from that Falkner-Skan-Cooke 

equation. And, the from that, we will go to the second equation, that was g double prime 

plus f prime g equal to 0; that we will be solving, so, we will get g. And then, from there, 

we have gotten U 1 and W 1. Well, if you see that, this was what was established by 

Prandtl himself. 
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So, we notice that, this profile is purely two dimensional. And, you can do a little bit of 

computations and then, calculate the shear factor. The shear factor is 2.54, which is 

slightly smaller than the Blasius profile. So, that means what? Of course, it will be more 

stable. Smaller the value of H, more stable it is; you saw, the flow with adverse pressure 

gradient H keeps rising. So, you would see that, and this is what is obtained; that, if I 

calculate R e theta critical, based on momentum thickness, this is about 235, which is 

higher than R e zeta equal to 201 for the Blasius profile. So, this is slightly more stable, 

but you understand now, this is the attachment-line plane; it is not a stagnation point 

flow. It is, it is different, because the stagnation point flow for 2 d section, we have seen 

that, R e delta star, critical value reaches a value, which is greater than 10,000 as 

compared to Blasius profile of what, 520. So, that 520 actually corresponds to R e zeta 

equal to 201. And so, you can see that, this attachment-line plane is not as stable 

stagnation point flow; it is slightly more stable than the Blasius profile. This was what 

we pointed out. 
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Now, having defined the equilibrium flow, we can start thinking of its stability. How do 

we do that? 
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Before we do that, if we are looking at instability of the attachment-line flow of the 

swept wing, let us look at what people have noted experimentally. For example, Poll, D I 

Poll, did that experiment and instead of taking a wing, he took a long cylinder and he 

noted that, along this attachment-line in this plane, so, if I have this plane, in this plane, 



of course, there will be a lot of vortical structure, because of the, aided by the swept 

angle, they will propagate inside the shear layer or outside the shear layer. 
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So, that is what is being said that, experimentally it was noted that, attachment-line 

vortical structures are very much there. So, we decided to investigate the subcritical 

instability by looking at the role of convecting vortical structure in explaining this 

leading edge contamination problem. And, what we would be able to do is, we have 

defined the equilibrium flow, but now, for defining the instability of the attachment-line 

flow, let us solve the 2 d Navier-Stokes equation. Now, that will be your, all inclusive; 

the flow itself is two dimensional and then, we will find out its instability by solving the 

2 d Navier-Stokes equation. So, there is no assumption made, except the fact that, we are 

talking about the disturbance field also being two dimensional. We are not talking about 

3d disturbance field. And, we, we are not talking about invoking Squares theorem or 

anything; it is just that, we are starting 2 d instability. Now, the situation is something 

similar. 
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So, if I project this flow, I mean, if I look at it like this, the flow will exactly be the same 

thing that, we have done, studied before. We will be talking about a flow in a box and 

there is this vortices; they are going in this direction. That is what the experimental 

observation of Poll, finding… Everybody have looked at it, Anhal, they have reported 

the existence of convecting vortices in the attachment-line plane. So, we follow the same 

thing that, we have talked about just now. In fact, we are discussing this attachment-line 

instability as an example of that vortex individual instability. So, that is the whole idea. 
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So, solve the Navier-Stokes equation. These are the two governing equation, stream 

function equation and the vorticity transport equation and here the R e that we are having 

here, is defined in terms of the velocity scale that is given by U 1 e. If you recall, that is 

the edge velocity in the streamline fixed coordinate at the edge. So, that we have 

calculated. And, the length scale we have purposely taken as some kind of a… See, your 

attachment-line boundary layer would be somewhat like this. So, you take this as your 

delta. So, this is your length scale. That is what has been used in defining this Reynolds 

number. And, he would completely agree with me that, for a two dimensional flow, 

stream function and vorticity formulation is the most accurate one. Because, you do not 

have any scope for spurious mass generation etcetera; existence of psi does that and the 

vorticity is a higher order quantity, which you are directly solving. It is much better than 

solving, let us say the primitive variable and then, converting those U and v components 

into vorticity; because there, if I get a solution of a differential equation as U and v, and 

then numerically differentiate to get omega, that accuracy will be compromised as 

compared to directly obtaining omega from a differential equation. 

So, that is what we like to emphasize. There are other mathematical issues. That vortical 

field also happens to be divergence free, because it is a two dimensional flow, so, it 

becomes automatically divergence free. Why, because omega is in the z direction; 

divergence of omega in the x y plane is, of course, 0, because omega is not a function of 

x and y. So, that is a very significant plus point. While, if you solve for primitive variable 

formulation and although, by definition the vorticity itself, again in the, is in the z 

direction and again, it will be divergence free, but the magnitude of the vorticity 

calculated, will depend on numerical differentiation of U and v; that will be a 

shortcoming of that formulation. 
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So, what we do here is a same thing. We are studying the flow in a wall. This is a, 

basically a straight line; we take 501 equidistant points in this direction. So, this is our 

stream-wise direction. So, this is your stream-wise direction and this is the wall normal 

direction that we are studying. So, this is essentially your leading edge of the wing. 
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In this direction, we had taken about 101 stretched point in the boundary layer, in this g f 

m paper that we reported some results. Show you some result, one can do any number of 

calculation; there were those two papers that we talked about; one was in the computers 



and fluids, where we reported the computational result. And, this paper, this g f m paper, 

where we talked about the physical mechanism. In those publications, you would see 

there are many, many cases computed, but I will just show you one particular case of 

convection speed of 20 percent, with respect to the free-stream. And, think of the height 

of this vortex; it is about 30 delta star. This height is slightly more than what we have 

done in the experiment, where we have taken something like, what, 27.5 five delta star. 

So, will look at it and then, see, what do we get; how stable or unstable this is, with 

respect to the Blasius boundary layer. 
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So, we look at some representative results. In the top frame is shown, for which the 

vortices, the vortex, one of the vortex, a periodic vortex we are studying. It is right 

outside. Please understand that, even this numerical experiment that we are reporting 

here, it is basically a unit process. We are trying to find out, if a single vortex passes by, 

then, what its effect is; that is what we are calling as vortex inducing stability. And, in 

this kind of experiments, what we are talking about, it is not necessary, just only a single 

vortex passes by; you get a stream of such vortices getting created here and swept away 

like this. So, each one of them will have its foot print. 
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So, what we are noticing here is a typical output of such a foot print. So, in a actual flow, 

it will be a sort of a convolution of all this results taken together; but we are trying to 

establish by a numerical unit process, what this is like and in this case, what you notice 

that, this vortex is still outside the inflow. So, if I take it like this, this vortex could be 

somewhere still outside and it has started affecting the flow inside. How does it do it? Of 

course, it does do it; do it because, through this inflow boundary condition and the top of 

the computational boundary, you have some imposed condition; that shows the effect of 



the approaching vortex. And, you can already see, bulge there, indicating the flow has 

been affected. And you, you can, now, that answers your question, whether we have a 

constant shear layer thickness or not. It just simply starts affecting it somewhere here, 

unlike the Blasius boundary layer case. What did we see there? We saw two sites of 

instability; one was at the leading edge. Here, there is no question of leading edge; we 

are talking about infinite thing. 

(Refer Slide Time: 31:06) 

 

So, we have just simply taken a small slice of it. So, there is no leading edge site in 

consideration. And, what did we see there in the Blasius profile also? That it is selective; 

it does not happen anywhere, but at a fixed location. And, what was that fixed location? 

That is what we are doing through the assignment. We are finding out, at different xs the 

time history of pressure gradient; we will be able to find out why and where, and, it 

occurs and what value of c, it is the most potent. So, that is the essence of the assignment 

that you guys are doing. 
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So, what you are going to report back to me, is a specific nature of the Blasius boundary 

layer. Quite unlike here, you will not have that. Here, things will have to essentially start 

from the leading edge itself, of the computational domain, right at the inflow. And, we 

are starting to see that. And then, as it approaches near, then, you can see that, it just 

breaks up into all those wall normal vortical eruptions. And, this is a solution at t equal to 

6, 7, 8 and various times are given. I think, the third frame is at t equal to 1001; then, the 

last frame is at 2001. So, that is what you see, that, the vortices are the sweeping past and 

then, even in this case, what has happened? The vortex may be still somewhere here, but 

the disturbance is a swept away. This is due to one vortex, but there is no guarantee, or it 

would really be likely that, by the time this has gone away, another one is coming back 

in its trail. So, there would be repetition of this events and this is what we need to do.  



(Refer Slide Time: 42:24) 

 

This also tells you, if you are an aerospace engineer that, how you would go about 

designing a trouble free wing. What would you like to do? Minimize the source of 

disturbance. We have seen, we have been talking about it all through, that there is no 

such thing as generic instability. We have seen for pipe flow, the flow can be unstable at 

2000 Reynolds number based on diameter; it can be even at 100,000, depending on how 

you quench the background disturbances. So, here also, the boundary layer may be 

ready, but if I do not allow this convecting vortices to be created, I am done. So, 

basically, if I am trying to design a wing, I would pay particular attention in that design, 

where this convecting vortices, this corner vortices are not created at all, or if they are 

created, they go at a small, weaker strength and also, there is a selectivity of c, that you 

can actually take a look at that paper, that computers and fluids paper, where we have 

done some seven, eight cases; take a look at there and you will find out the receptivity of 

the boundary layer for different c. 

So, what we just now saw, we can make this following comment. The first frame 

corresponds to an early time, when the convecting vortex is left to the, left out of the 

computational domain and its influence was seen as an upwelling of the shear layer near 

the inflow. By the next frame, we saw the convecting vortex has appeared over the 

computational domain, but we also see a very intense sequence of instabilities over the 

attachment-line. And, if you look at the last one, this is where the location of the vortex 



was; however, the leading edge of the, leading edge of the core end structures, those are 

getting created due to this vortex instability, they are out of the competition.  

So, you can see that, it also goes at a very fast clip. So, that is the reason that, when you 

start designing a aircraft wing, you want to be, do, you want to do a, sort of a 

conservative estimate; you allows assume the flow to be turbulent right from the leading 

edge; because, if you do not stop the flow of this convecting vortices, it is very likely, the 

flow will become turbulent right from the leading edge, through this mechanism. We are 

not talking about how this leading edge vortices affect the flow over the wing surface 

later; but here, we are just keeping our attention focused slowly, on what is happening at 

the leading edge; it is on the attachment-line plane itself. Now, we also noticed that, such 

vortices created adverse pressure gradient, if it is counter clockwise, it creates an adverse 

pressure gradient ahead; the action of ((scarving)), that is what we explained. It tries to 

lift off the shear layer. At the same time, behind this vortex, what it does, it tries to push 

it down. So, what will happen? You will see a kind of a thinning down of the shear layer 

and that is what we saw in the last two frames. Wherever…So, looking at the last two 

frames itself, you can kind of tentatively guess, where the vortex is, where the vortex is. 
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The vortex, like what we are seeing here, there is a thinning down on the, here. So, the 

vortex must be somewhere ahead of this. So, on this side, it is creating instability; on this 

side, it is thinning down the boundary layer. And, rest of the place where its effect is 



marginal, you can very clearly see that, it is almost like a constant thickness, a boundary 

layer. And here, you are also seeing the same thing, but now, here what has happened, 

that, it has created a significant thinning down, because, it has acted over a longer period. 

See, this is about 1500, this is 2000. So, over a longer period, the same favorable 

pressure gradient has acted upon. So, please do not try to view it like the usually, the 

Eigen value analysis always looked at; but what happens is, you have a time independent 

equilibrium flow and the instabilities warn of how the disturbance grow in space; 

however, in this solution of Navier-Stokes equation and the attendant description that we 

are talking about, we really do understand that, there is time element playing a big role. 

That is what we are doing. We are calculating the pressure gradient as a function of time 

at a fixed location. And, we do see that; see that very clearly that, here, well it was 

getting affected here. Here also, you could see, the vortex is somewhere here, there is a 

little bit of thinning down. And here, it is, you can see, it has thinned down a little more; 

and here, the thinning down is marginal. But as time progresses, you can see, this is the 

trace of the free-stream vortex; that is why we did not even mark by arrow. If, I wanted 

you to understand that, but here, in this spot of the shear layer, it has acted over a long, 

longer period and that cumulative effect shows the significant thinning down of the 

boundary layer.  
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Now, this is what we commented upon. Now, we did talk about this, that we have looked 

at a very particular case of gamma v in terms of this; that corresponds to a core diameter 

of 6. The first bubble occurred at a location where the Reynolds number based on 

displacement thickness is about 190. 
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So, that, what was the R e critical? It was noted as 235. So, if I see instability event 

occurring at 190, that is obvious, that it is a sub-critical event. So, that is what we are 

saying, the flow criticality indicates a sub-critical instability. And, this is something we 

have all along seen in vortex individual stability. Once the primary instability makes its 

appearance, through the formation of a first bubble, a succession of many others will 

follow. They will be ahead of it, because the, locally if the shear layer bulges out, it 

creates a further adverse pressure gradient ahead of it. That is what you do, you do see a 

intensification of cascading effect of this adverse pressure gradient. And, this cascading 

phenomena occurs at a very phenomenally high speed. And, that is why the 

contamination just simply sweeps across. So, once you have an attachment-line shear 

layer, which is slightly more stable with respect to the linear mechanism, it is of more 

interest to investigate this bypass mechanism of LEC. We have, we can actually talk 

about this. This can actually provide a very nice basis for future investigation which we 

have not been able to do. 
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Suppose, I define this solution of Navier-Stokes equation in the attachment-line plane as 

the inflow of calculation where, I could do something like this. Let us say, this is the 

leading edge of the wing and this is my attachment-line plane. Now, I could do is, I 

could basically study the instability over the wing. This solution, as a function of time, 

can come from what we have done just now. So, it is like creating a inflow condition and 

then, you can study that. You recall, this is what we talked about; that we talked about 

the necessity, for first seeing what happens in the attachment-line and then, subsequently, 

what are its effects downstream, on the wing. So, that part of the investigation is 

overdue. Maybe somebody will like to do that, and it is going to be a very fantastic piece 

of work, because, most of the analysis or the research results, those are available in the 

literature, you basically split the flow into to two; either you look at the stream-wise 

instability or you look at the cross flow instability. But if you do a complete 3d analysis, 

you are going to see a combination of the two. So, you do not have to make any 

assumption. You are going to get a truly space time dependent three dimensional 

instability study. Maybe I am giving an idea, for doing some future research, for 

yourself. 
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Now, we reiterate that, instability is only feasible, when the speed of this train of 

convecting vortex, remember, we did that case, where we have periodic vortices; that we 

established there. We also considered a periodic vortex. There also you found out that, 

you basically have to have a speed, which is lower. Why, because you recall, you are, 

you are now seeing it, in your disturbance stream function expression. What is important 

is U infinity minus c. So, that is why your c has to be less than equal to U infinity; that 

gives a large amplitude. So, that also, you will notice that, for a periodic vortex also, c 

has to be distinctly different from U infinity; that is what we are saying. But there are the 

differences; one of the main difference is, of course, in this case, periodic vortex case, 

you impose a space and timescale; here, you do not. 
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In this case also, we said that, lower speed of convection has higher resistivity; that we 

have seen with the help of those expressions for disturbance stream function. And, we 

have shown that, you can show the c of bypass transition. This was not possible. There 

was this case computation by Obrist and Schmid. They had some earlier inkling about 

what we have done in our fast track paper that, the vortex induced instabilities is 

important. So, Schmid was involved in studying in bypass transition. So, he asked his 

graduate student to look at it. 
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What he did was basically this. That you have this flow like this, and then, created two 

vortices, one going in this direction; another going in this direction; and both of them 

were set equal to c equal to infinity. See, look, I mean, there is a qualitative difference 

between what we did and what they tried. They tried to do it, study it as a three 

dimensional problem and they put this convecting vortex outside, but they, that was 

forced to go at freestream speed. 
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That is why, they did not see any effect at all, very very marginal effect. We can actually 

explain what we did; it was in the attachment-line plane itself. Then, we can show that, 

disturbance energy does get created significantly, if you do convect the vortex which is 

not going at this. So, I think we will stop here and will take up from this point in the next 

class. 

 


