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In the last class, we made some remarks about the short coming of eigenvalue analyses 

and we proposed that instead, we would look at receptivity analysis of shear layer. We 

are still confining our attention to viscous instability mechanism, because that is all 

encompassing. The study would also include the inviscid modes as you have seen from 

the Orr-Sommerfeld equation. 

(Refer Slide Time: 00:48) 

 

What you do in receptivity study is, basically relate cause and effect; that is what we say. 

That gives you a sort of leverage to work out circumvents of the problems, those were 

identified by early experimentalists like Schuhbauer and Skramstad. They wanted to find 

out how to work out the best means by which instability waves could be excited. And, 

this was what they had to say, that in trying to work out a method, they found that 

method using sound, whether it is pure notes or random noise, were not at all 

satisfactory. And, all they could do is, they could vibrate a ribbon inside the shear layer 



very close to the wall; not exactly at the wall, but very close to the wall. And, they could 

get those tollmien-schlichting waves. 

We particularly pointed out that if you are looking for 2 dimensional instability modes, 

acoustics is going to be a very poor candidate, because acoustic excitation is inherently 3 

dimensional. Nonetheless, eigenvalue analyses obscures your vision to give you some 

idea about causes itself. You just simply try to say possible effects through indirectly 

that, if there were disturbances, which would have been adequate to excite those, then 

what would be the effect? That is the kind of thing. 

(Refer Slide Time: 02:33) 

 

We did talk about free stream turbulence; how important it is, because the vibrating 

ribbon experiment of Schuhbauer and Skramstad showed that you could excite the TS 

wave by vibrating a ribbon inside the shear layer. But, suppose the disturbance is outside 

the shear layer; that is what the free stream turbulence is most of the time. Whether you 

are flying any aircraft or you are doing an experiment in the tunnel, it is what that you 

are getting in terms of the background disturbances. 

Now, this result that you see in front of you is somewhat very intriguing and special, 

which we did few years ago. What we try to do, is study the flow past circular cylinder 

for a Reynolds number of 53. Why 53? Because earlier theoretical studies have revealed 

that if you keep your Reynolds number about 47 or 48 or so, then you see this vortex that 

is sheared at the back of a cylinder, circular cylinder. Now, this event is traced to the 



instability of the flow. Now, the question is – then, for a Reynolds number of 53, we 

should see a shedding and that is what one would like to do. At the same time last class, 

we did critic about characterizing experimental facilities in terms of a single quantity 

called turbulent intensity like Tu; what you define as a kind of a root means square 

disturbance; average disturbance in the physical plane itself. That kind of 

characterization falls a little short and that is what we wanted to highlight through this 

experiment. So, what we did? We fixed the Reynolds number and we took two cylinders: 

one of diameter 5 millimeters; another is diameter 1.8 mm. And, to keep that Reynolds 

number, in this case, the tunnel was set at a speed of 17 centimeter per second. And, in 

this case, (Refer Slide Time: 04:59) it was much higher; we required 46.9 centimeters 

per second to simulate the same Reynolds number. 

Now, forget about all the things that you have been told in the first course in fluid 

mechanics about similarity parameter. You have been given a study diet of the idea that 

if you keep the similarity parameter same, flow would be same. Then, we wanted to 

prove that and that is what we did. And now, you can see, here for this case at higher 

velocity, you do see some eddies in the back. This is a prolonged attached eddy here; this 

at that tail end of those two eddies, gives rise to something like an unrelating excitation 

something like what we studied in Kelvin-Helmholtz mode. That gives rise to breaking 

up of those attached eddies and gives rise to weak unrelation. Now, it is a matter of 

interpretation. Is this like what we know of the Karman vortex street in a flow past 

cylinder? That is what you see in this other case. For this lower free stream speed, (Refer 

Slide Time: 06:21) what we notice that very clearly the vortices are sheared right from 

the cylinder itself. It is quite unlike this case. 

Now, why these two flows are too different? That you cannot get from the understanding 

of that so-called Tu, because we are working on the same tunnel. So, we have that so-

called same Tu. What you profitably can understand is you try to find out what is the 

nature of the back ground disturbance in the tunnel? The same tunnel should have the 

same background disturbance; unfortunately, it is not so, because given the different 

speed, I get different disturbance environment. This is what it looks like (Refer Slide 

Time: 07:18) for 17 centimeters per second and this is what it is for 46.9 centimeters per 

second; the same tunnel. And, what is plotted here is the disturbance amplitude versus 

frequency. And, how it is done? We have removed the model; we just simply run the 



empty tunnel at two different speeds. And, can you see the disturbance environment 

being so different? Now, this is the kind of problem that one does not expect to see. 

What you notice though that from the earlier studies, you can find out this strouhal 

number; the shedding frequency – that is what you may put a probe little far down, 

measure the signal, and you will see a characteristic frequency, time variation. That is 

what is called as a strouhal number. 

Now, if you look at the strouhal number, that is a fixed frequency for this particular 

Reynolds number. And, what we did was, we just simply zoomed this spectrum around 

the strouhal number. And, in this case, you see this is the strouhal number (Refer Slide 

Time: 08:23). There is a peak. And, this value is something like about 25 to 30; in that 

range. So, at strouhal number, we have the background disturbance; that is the most 

robust. In contrast, if I look, for this higher speed case, I get the value, which is about 10 

times smaller. We get 10 times smaller at the strouhal number. So, what happens? This 

tells you a very clear story that if you do not have the cause, you do not have the 

adequate effect. So, in this case, cause is strong; 10 times more power than this. And, 

that is why you are seeing vortex shedding. So, this is the motivation for doing 

receptivity. What you need is the adequate strength of the disturbance field. Then only, 

you will see the desired effect; otherwise, you will not. 

Unfortunately, if you would have done instability studies, it will not distinguish, because 

you are looking at the same Reynolds number, same tunnel; everything same. So, when 

we did produce this result, this was quite unloving especially for people who have just 

come out from the first course in fluid mechanics, where they have been told time and 

again this importance of similarity parameters. And here, we are saying that is not so. 

What it actually means that there may not be a single similarity parameter that one 

should be looking at. In this case, of course, the excitation at the relevant frequency, that 

is, frequency spectrum should also be an independent variable in the study. And, if we do 

not do it, we are going to be buffered like this. So, that is why I would say that please 

look at our results once again in a different perspective. 



(Refer Slide Time: 10:25) 

 

We need to really have intimate knowledge of the input disturbance. And, this is what we 

saw that in actual flow, even for a flow past a flat plate, Schubauer and Skramstad did 

show that natural disturbances are not as sort of coherent as one would like to see in a 

well-designed experiment or in the theory of instability by normal modes. 

(Refer Slide Time: 10:59) 

 

And, this we discussed. Now, you can see so-called effect of free stream turbulence for 

flow positive flat plate. And, here you have a complete mishmash; you have different 



kinds of disturbance environment and you have different types of transition Reynolds 

number. 

(Refer Slide Time: 11:30) 

. 

And, this basically is sufficient for us to be convinced that we need to do a receptivity 

analysis. And, that is where we actually stopped. We said, what do we do when we 

perform an instability analysis? What we do is basically we try to solve Orr-Sommerfeld 

equation and we saw it was a fourth order ordinary differential equation. So, it has four 

modes. Two of those modes decay with height; two of the modes grow with height. And, 

in formulation and in the analysis, what we did? We only retained those decaying modes. 

So, what kind of disturbances are we talking about? That any disturbance that will decay 

with height. So, that cannot be a free stream turbulence effect, because free stream 

turbulence would be the other way that it may not be able to penetrate inside the shear 

layer, but it is very much present outside. So, here that kind of a theory can only be 

verified by an experiment of the kind that was done by Schuhbauer and Skramstad. They 

excited the flow from inside the boundary layer. You see the connection now. 

Unfortunately, eigenvalue theory would not tell you that. 

And, what we basically then conclude that the stability theory results are very relevant 

for wall excitation. And, those modes which decay with height, we call them as the wall 

mode. You are now in a position to appreciate the fact that there would be cases, where 

you would not be exciting the flow at the wall, instead you would be exciting the free 



stream. And, if those modes are unstable or they can indirectly excite the wall mode, 

there has to be some coupling mechanism. You create a disturbance in the free stream; 

somehow, it gets coupled and the wall modes get excited. Then, you can generate this 

way actually, (( )) in 1999, published a paper, where he showed the same thing that you 

vibrate a ribbon in the free stream at that frequency, at that fixed frequency; then, you 

can see, it gets coupled directly and you get again TS wave at the wall. So, there are 

ways and means. We will talk about how this coupling is performed. 

However, this is the paper that we wrote in 2002, showing how this coupling mechanism 

works. We looked at a problem of different kind. We talked about a train of vortices 

going over track plate. We know, the free stream turbulence could be a sort of a 

combination of this unit process. The unit process we are talking about – either flat plate, 

I have vortices periodic passing over convicting vortices. So, that is what we did study 

and (( )). Then, we realized that when we are looking at these vortices moving at a 

constant speed, that is rather interesting. Have you ever sort of paused and thought about 

all these things that we are talking about inputs, which are steady, but all instability 

points add disturbances, which are time varying. So, here also, we are doing the same 

thing; we are talking about a train of convecting vortices moving at a constant speed at 

fixed height. At this point, you will see unsteady effects come up down in the book over 

the plate. So, this actually was performed to find out what was the speed range at which 

this coupling is maximum. We did it because, Jim Candle of JPL did some experiments 

in a wind tunnel and he did see a selective band of speed at which this coupling becomes 

very important. We will talk about that also. 



(Refer Slide Time: 15:28) 

 

But, let us now talk about how we set up the receptivity problem. We can do many 

things. We will start off with the simplest possible way of looking at the linearized 

Navies-Stokes equation and show how receptivity route for excitation applied at the wall 

creates shears. So, this is essential. This approach of doing problem is called a dynamical 

system approach. So, basically, we have a fluid dynamical system that is like a black 

box. You have some input; you are noticing some output. Your task in a dynamical 

system approach is to relate this input with the output. That is what we do. 

(Refer Slide Time: 16:24) 

 



We will make use of some mathematical tool in terms of Fourier-Laplace transform. So, 

be ready to understand that. 

(Refer Slide Time: 16:30) 

 

And now, we are talking about dynamical system approach. So, this is the fluid 

dynamical system and this is basically being excited; let us say some simple thing; I call 

it x of t. And, the output that I get, let me call that as y of t. So, there is something this 

black box is doing. That is what we call as the transfer function. I will call that as h of t; 

h of t and then it will be function of all the associated parameters of the problem like 

what we showed for the cylinder. There, Reynolds number is one of the parameter, 

which was well fixed, but there was the other parameter of the various time scales; and, 

the time scale means in that case, it was the amplitude at strouhal frequency; was a thing. 

So, we can have all kinds of parameters here, which we can call p, q, etcetera and then 

we get this. What happens in Fourier-Laplace transform theory or the Fourier-Transform 

theory itself what we would show, (Refer Slide Time: 17:51) that the output is nothing 

but product of this transfer function in the omega space multiplied by the input spectrum. 

So, output spectrum is a convolution of the input spectrum and the transfer function of 

the system. 



(Refer Slide Time: 16:24) 

 

Now, there are two ways of looking at this. We have done some experiments in the lab, 

etcetera. In dynamical systems or vibration analysis, what you do? You have done in a 

structure dynamics course. You vibrate the system at a fixed frequency; you have a 

shaker and then you excite the structure with the shaker; and then, you measure the 

response. That is what is called as the frequency response, because you are focusing 

upon a particular frequency, the frequency of the shaker. That is what we call as the 

frequency response. 

There is the other experiment that you have done even earlier in your school. When you 

did that experiment of seeing of a pendulum, what you did? You just gave a disturbance 

at t equal to 0 and let go the system. That is what we call as the impulse response of the 

system. You just give an impulse and let it go; whereas, here in frequency response, you 

are continuously exciting the system at the same frequency. So, these two are different. 

But, they are sort of complimentary; the only interesting part is what you can say 

whether interesting major difference between impulses response and frequency response 

would be. Frequency response would actually latch on to the frequency of excitation. So, 

it is like a forced vibration problem; whereas, impulse response – what it does? It allows 

the system a freedom to choose its so-called natural frequency. So, that is why you 

should see that there is a merit in distinguishing between the two. Although you can 

construct one from the other, but be careful in interpreting the results. So, we will talk 

about this. But, before we do that, let us talk about some ground work that we require. 
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Now, first, talk about Fourier transform that you are familiar with. Fourier transform of a 

time varying function, f of t, is given by of F of omega. How it is defined? I just simply 

do e to the power of minus i omega t times f of t and perform integral. What happens in 

this Fourier transform, omega is real; omega is always considered real. Please note that I 

have given the range of time from minus infinity to plus infinity. What does it mean 

actually? What does time t equal to 0 mean? When we are talking casually about 

instability theory, we do not even comprehend that. But, when we are talking about 

dynamical system theory, then the time origin makes sense. This is where you begin the 

experiment. So, if I want to study a system, I switch on the system at sometime. That 

would be t equal to 0. So, that is why, although in notational convenience, people do 

right from minus infinity to plus infinity, you would probably writing about 0 to infinity. 

That would be a better thing to do. 

There is also associated issue of what we already know, is a causality principle. I cannot 

expect to see some effect for something that has happened before even I started the 

experiment; it does not make sense. So, causality actually precludes that you consider 

this range of integral from minus infinity to 0. You would be well advised to start it from 

0 to plus infinity. Now, if we have this quantity – Fourier transform, this is called the 

direct transform; as a function of different omega, I can synthesis my signal also like this 

(Refer Slide Time: 22:23). So, basically, when you do frequency response, what you do 

is, you try to get this F of omega. And, if you do it over a large range of omega, and then, 



you can construct the corresponding time varying function, which will have a mixture of 

all these frequencies acting together. So, that is one way of looking at it. Now, that is 

about time. Time is special; causality is special. 

(Refer Slide Time: 23:05) 

 

When you look at space, then you do make use of what is called as a Laplace transform. 

Laplace transform basically is the counter part of Fourier transform, but now, the 

independent variable is space. And, when you do about the space, we can do about what 

we just now talked about in the Fourier transform. I could just talk about a unilateral 

Laplace transform. Why it is unilateral, because the range is from 0 to infinity. We are 

excluding minus infinity to 0 path; that is why, it is unilateral; we indicate it by subscript 

I. So, this is given by this. And, what is important for us to realize that this part – earlier, 

omega was real. But, now, we are talking about omega as complex, which has a real part 

and has an imaginary part. So, what happens is, I can see that the real part constitutes the 

phase; is not it? This is going to be your combination of sin and cos. So, this is the phase 

path; whereas, this path actually directly conspires with the function to alter the 

amplitude itself, the magnitude itself. So, this is something what you need to do. 

Why do we need to make this alpha complex? There are some nice elaborate theory, but 

we can understand it very clearly that existence of a Fourier transform is not always 

guaranteed. But, suppose I take f of x, I can measure f of x and then I can multiply by 

this factor, (Refer Slide Time: 24:52) which will attenuate that. Then, the integral may be 



convergent. So, if I take alpha i negative, then what will happen that the original 

problem, if I just taken a real alpha r, maybe difficult to perform this integral. But, the 

moment I multiply it by e to the power alpha i x, then what happens? As x increases, 

those contributions are going to be done, because alpha i is negative. So, this is how we 

can conceive off the requirement of making alpha complex that we may or may not have 

the Fourier transform. By resorting to Laplace transform, we can improve its 

convergence property, so that it exists. So, this is what we need to do. 

Now, what we can do is suppose in the alpha r alpha i plane, if I look at, what I could do 

is, I could take a line, along which I will perform this integral (Refer Slide Time: 26:12). 

That is what I am doing; I am taking a line, which is say, alpha i distance from the real 

axis. And, I am performing the integral from minus infinity to plus infinity, but along a 

line for which alpha i remains constant. So, this is this (Refer Slide Time: 26:37). This 

type of contours are called Bromwich contour. So, we take a particular contour to 

evaluate this integral and we are talking about that as a Bromwich contour. And, in this 

case, the Bromwich contour has been chosen in such a way that alpha i remains constant. 

If alpha i remains constant, now, what I can do? Now, I can perform the inverse 

transform, inverse Fourier transform; on which function now? This multiplied by this; 

(Refer Slide Time: 27:12) that is what I have written here; f of x e to the power alpha x is 

given in terms of this quantity. So, now you can see, this is the direct transform; this is 

the inverse transform; that is, for the unilateral Laplace transform. And, what we did? 

We purposely choose a value of alpha i negative. So, what happens is, if I take alpha i 

further negative, then what happens? If that particular alpha I, the integral is convergent, 

if I reduce alpha i further, it will be further more convergent. So, that is one thing that we 

can do. 



(Refer Slide Time: 02:17) 

 

So, now, what we can talk about, as I said for space variation, which are not constrained 

by causality. So, I could actually take x going from minus infinity to plus infinity. That is 

what we are doing. When we do that, we call that as bilateral transform and that is 

indicated by subscript I I 2. So, F 2 of alpha – again, I perform that integral going from 

minus infinity to plus infinity for all possible (( )). So, that is what we like to do. 

(Refer Slide Time: 28:44) 

 

Now, if that is what we adopt, then we can write it in that as a sum of two quantities. 

This path range goes from 0 to infinity and this path goes from minus infinity to plus 



infinity. So, if take f of x, which could take all possible values, this is nothing but f of x 

times U of x. What is U of x? It is a Heaviside function. What is Heaviside function? For 

all that means, do it like this, say U of x minus x naught. So, what I do is, I mark up a 

place x naught. And, this has the property that this is 0 all the way up to x naught (Refer 

Slide Time: 29:30). Then, it goes there and remains constant. This value is 1. Also, it is 

called unit step function; Heaviside function or the unit step function. So, it takes a unit 

value and goes like a step. So, that is what it is. So, my original function can take 

anything. But, because of this, I am only performing integration from 0 to infinity. It is 

almost like multiplying that f of x into U of x. 

And, this one, (Refer Slide Time: 30:00) I can simply think of f of x multiplying U of 

minus x, because that what it would be; for all negative x, it will be 1; for any positive x, 

this will become 0. So, that is the complementary thing. So, what happens is, as I told 

you that if I do this transform and I get that alpha i x there, if that alpha i x for a 

particular alpha i x, it has worked, what will happen? It will work for any other alpha x. 

Remember, this was negative (Refer Slide Time: 30:42). So, now, it can go up. So, that 

is what it is. So, this first integral would be given by the shaded area like this, which is 

above this line. So, this line, if I call that alpha i is equal to gamma 1, that is the lower 

limit. The same way, the second part would be defined in a region, which will be below 

another line. And, this line, (Refer Slide Time: 31:07) I will call it as a alpha i is equal to 

say, gamma 2. That means what? A part of the integral is valid in this region; another 

part is valid in this region. So, the total together will be valid in this cross hatched area. 

So, this is the way you construct the Bromwich counter, which says that it has to be 

taken from minus infinity to plus infinity. But, you do not have the liberty to take it 

everywhere. So, by this logic, you can say that this is the region where the Bromwich 

contour can lie. 



(Refer Slide Time: 31:55) 

 

This is something that we keep back of our mind that given a problem, we need to 

identify a Bromwich contour along a strip of convergence. So, this is the strip of 

convergence. Now, you can see, we have worked it out. A part is valid in this part; 

another part is valid in this. So, this is the common region, where both the parts are valid. 

So, that is the strip of convergence; that is, span by gamma 1 and gamma 2. And so, 

when we say choose this complex wave number, alpha r, alpha i, we need to take it 

somewhere. There is no need for you to take it along constant alpha l line. It is only that, 

you should be in the strip of convergence; you can do anything that you wish. But, you 

would notice that we do very efficiently when it comes to fast Fourier transform. And, 

what we do in a fast Fourier transform, we go along the real axis, omega r. 

Here also, we can adopt the same picture. I can just shift this thing to this (Refer Slide 

Time: 33:02). That is what we have done here. Whatever the effect was, we just shifted it 

by e to the power alpha x and then we performed integral for alpha r ranging from minus 

infinity to plus infinity. So, I could perform this part very easily using FFTE routines. 

And, this is what we would be doing, because we would like to use FFT. It is just a 

matter of importance for us to remember that what we get out of fast Fourier transform is 

much more accurate than if we would have performed some kind of a numerical 

approximation. This I jokingly call Slow Fourier transform. If you compare the Standard 

Fourier transform with fast Fourier transform, it is actually the fast Fourier transform is 

more accurate. So, do not think of some problem; I will spend more time; I will write out 



a program and I will evaluate it slowly. That will be not only slow, that will be 

inaccurate also; so, we should remember this. So, now, we know what a Bromwich 

contour is. I suppose from this point on, you should not be very much surprise. 

Unfortunately, though not many people use this Bromwich contour integral method. So, 

what you are seeing here is what we are going to perform. So, I have underlined that 

Bromwich contour lies inside that strip of convergence; and, that strip is defined by alpha 

i ranging between gamma 1 and gamma 2. 



(Refer Slide Time: 34:54) 

 

This is what we have worked it out on the black board. So, you have no problem in 

understanding what we just now talked about. 

(Refer Slide Time: 35:04) 

 

Now, let us talk about the interpretation of Bromwich contour. What does it mean? You 

see, we found out that one part of the integral is valid for x positive; another part of the 

integral is valid for… However, what we are doing, if we are inside the strip of 

convergence and we perform that integral along this let us say, fixed alpha i contour 

here, then what happens? I am going to get information for both what is happening 



downstream as well as what is happening upstream. Now, this quantity that we are 

talking about F 2 of alpha – it is something like in Orr-Sommerfeld equation that phi; 

you recall that Orr-Sommerfeld equation is an equation for the Laplace transform of 

stream function or the normal velocity that we have established. 

(Refer Slide Time: 36:22) 

 

That phi, that equation that we write, is basically what? Disturbance quantity; so, let us 

say, that is like psi – this thing. And, what we did? We wrote it like there will be factors. 

So, let us say we make a point of view is this; we write it like phi; that is what we did. 

And, phi was a function of y; height from the wall. It was also a function of alpha. And, 

if we excited the system at a fixed frequency, then that would be that; and then, we did it 

like this – e to the power i alpha x d alpha. So, now, we can see that connection. 

This quantity (Refer Slide Time: 37:08) is the Fourier Laplace transform of the 

disturbance psi; and, the governing equation we have worked it out. So, the governing 

equation – how did we work it out? It is a ODE; we will solve it. But, when we applied 

the boundary condition, how did it appear? If we recall, we only looked at the wall mode. 

When we looked at the wall mode, we removed two modes, which actually grow with y; 

we only retained those ones, which… Then, we fixed those multiplicative constant by 

satisfying the boundary condition at the wall. And, in the process, the expression of phi 

came out to be something like a numerator by denominator. We will do that shortly and 

we will see what I am saying. But, let me just verbalize what we are going to see. So, this 



phi itself, when it is the solution of the differential equation and it has satisfied the 

boundary condition, it takes a form numerator by denominator. Now, what happens? If 

you recall the exposure to complex analysis that you would have situation that the 

denominator is 0, and those points are called what? The poles. So, now you can see, all 

that you have learnt have not gone; on use. 

(Refer Slide Time: 35:04) 

 

Now, we are seeing the merit of learning all those. And, there also, we did all those 

integrals going from minus infinity to plus infinity, indefinite integrals; that is what we 

are going to do. And, this is very familiar to you. You recall that you used to do some 

integral; if we have to do it from minus infinity to plus infinity, we take a semicircular 

arc and then everything was taken care of. What we just now said – this F has a role like 

what we talked about the amplitude of the disturbance function or the normal velocity. 

And then, we said, it will be of numerator by denominator form and the zero of the 

denominator provides you the poles. And, those poles are what? They are eigenvalues.  

Basically, what does the transfer function now tell us? Transfer function is something 

like the amplifier. So, if you give a very imperceptible small disturbance and at that 

disturbance happen to be the pole of the transfer function, then you are dividing by 0; so, 

you are basically amplifying it. That is this connection between your receptivity and 

eigenvalue analysis. Now, you can see that what we assumed that we are dividing by 0 

means, we are trying to excite the system at those eigenvalues. And, if I have also 



numerator, it is not exactly equal to 0; or, even if it is vanishingly small, then we have 

indeterminate form, 0 by 0. So, despite the fact that input is virtually absent, because of 

this indeterminate form, we still get a finite limit and that is the eigenvalue; 

eigenfunctions. Now, you can see the connection. However, those values that we will 

obtain as we have seen, could be a point like this, which will have (Refer Slide Time: 

40:40) a value of alpha r and a value of alpha i. 

Now, we have talked about group velocity. So, what is the utility of that group velocity 

that comes to your rescue here? You have identified an eigenvalue, but how do you 

know whether this eigenvalue corresponds to disturbance that is going down steam or 

upstream? You will have to find out the associated energy is going in which direction? 

And, that direction of the energy propagation is given by the group velocity. So, let say 

this point that P 1 that we have found out; that is a pole, has a positive group velocity. 

So, what does it mean? This disturbance will go downstream; positive group velocity. If 

it was negative, then it will be like this (Refer Slide Time: 41:31). So, what happens is, 

you must be already started thinking that a prior even when I start a problem, how do I 

fix my Bromwich contour. So we are giving you the recipe step by step that you identify 

all the eigenvalues; calculate their group velocities; and then, you see which is going in 

which direction. So, each of the eigenvalues has to be associated with upstream 

propagation or downstream propagation. So, in this case, (Refer Slide Time: 42:05) P1 

corresponds to the downstream propagations. 

Then, what happens is, I am performing the Bromwich contour integral from minus 

infinity to plus infinity like this. Now, what do I do? I can close it like this. And, because 

this is a pole, I will have to isolate it. I dent the contour, indent the contour, and go 

around. Then, what happens? Inside the shaded area, the function is analytic. Then, you 

can use all of those nice properties of Cauchy’s theorem, Cauchy’s integral formula to 

help you in finding out the response. However, you realize also, in all such activities that 

you have done in a complex analysis course, you have assumed that the contribution of 

the integral along this semicircular arc is 0. That is what is called as the Jordan’s lemma. 

Now, you see, Jordan’s lemma actually gives us a very vital guideline. How do we use 

the Jordan’s lemma, which says that the integral along this is going to be 0? So, what 

happens? If I perform this integral and this is a closed integral, the function inside is 

analytic, what happens to the integral by Cauchy’s theorem? 0. So, it is 0. So, what 



happens is, this integral plus this integral (Refer Slide Time: 43:42) equal to 0. But, then, 

what have we done? We have to also include the contribution coming from there, so that 

contribution goes to the right-hand side. So, what happens is, then, integral along this 

Bromwich contour in the presence of Jordan’s lemma is equivalent to 2 pi i times sum of 

the residues; that is the Cauchy’s theorem. So, that is how we go about it. It is all very 

nice and clear, but the only thing is you will have to make sure that Jordan’s lemma is 

good enough here. 
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And, there are some ways of finding it out whether the Jordan’s lemma is good or not; 

we can figure it out. But, if Jordan’s lemma is good, then if we perform the integral 

directly along the Bromwich contour, then we are going to get the solution for both 

upstream propagation as well as downstream propagation. You see, somehow if you look 

at all the text books on instability theory and the associated mathematical formulation, 

they just simply have no clue; they just simply say, up to some distance, there is nothing, 

all of a sudden disturbance comes and it goes in the downstream direction, and so on and 

so forth for a fluid flow. 

Now, if that happens, then we are talking about some kind of a discontinuous behavior at 

the excitation. But, we are talking about incompressible flow. How can you reconcile to 

that fact that you have very analytic functions; solutions are supposed to be possessing 

all kinds of derivatives and continuous. And, at the same time, at the excitation, you have 



a job discontinuity. This cannot be necessarily true. So, what happens is, this Bromwich 

contour integral solve that issue, because it gives a solution both upstream as well as 

downstream. And, what is more important also you realize that instability theory; what 

we did find out? We did look at the solution contribution coming from individual 

eigenvalues one at a time. And then, that is what we called as a normal mode analysis. 

So, each of the individual eigenvalues is one of the modes and we sum it over; that is 

what we do; 2 pi i times sum of the residues. So, each one of them working 

independently; but, we have also talked about the group velocity. What did we see? That 

waves interact and it can form groups. But, this normal mode analysis does not seem to 

give you a direct connection to that. So, we have to be careful in interpreting our results. 

Furthermore, we would also have to ensure that the solution of Orr-Sommerfeld equation 

has obtained satisfies Jordan’s lemma. Now, this is one issue. 
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We have also made one assumption here; as you can see here that we have performed the 

integral over alpha. What did we assume? That here, the system is excited at a fixed 

frequency omega naught. It is an assumption. If I excite a system at a frequency omega 

naught, for a stable system, I can think of that response also will be at omega naught. 

But, what we are doing it for alpha allowing the system to pick out its natural frequency 

can happen also with the time variation. So, what is the guarantee that if the input is at 

frequency at omega naught, output also will be at omega naught? This is more like an 

assumption. Whenever we do that, we call that as the signal problem. So, if I excite a 



system at a frequency omega naught, output is also at omega naught. This is what we call 

as the signal problem. So, please do understand that this is an assumption, which we 

need to really check it out. You can very clearly see how to check it out; that you do not 

need to make that assumption; you can also perform the integral over omega. Whatever 

you are doing in alpha plane, you can also do it in the omega plane. And now, omega 

also is going to be complex. And, you will have to be doing this Bromwich contour 

integral in the alpha plane, in the omega plane; and then, you would get a composite 

solution. We will talk about some of those exercises. 

However, before we do that, we need to understand that what we have achieved so far; 

that we are studying linearized Navier Stokes equation. By now, all of you are with me 

that Orr-Sommerfeld equation is nothing but the spectral representation of linearized 

Navier Stokes equation. I have just written it in the alpha plane; that is what we have 

done. So, we need to really do some of the studies that we need to be aware of. 
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Now, let me talk about some simple Fourier-Laplace transforms, which are rather useful. 

However, I think before I do that, I should tell you little bit about properties of Fourier-

Laplace transform, because you may not all have done it before. So, basically, we will 

talk about some properties. So, it is basically a short tutorial on Fourier-Laplace 

transform. So, let me go through it simply with you. 
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Then, say, if I talk about a function f of t, I said from the… This is the inverse transform. 

So, what we do is, we take this direct transform, F of omega and perform this integral e 

to the power i omega t d omega. Now, at any point of discontinuity, wherever we may 

have as we have seen; like unit step function is discontinuity. What we do at the point of 

discontinuity? That could be written as the average of the right-hand limit and the left-

hand limit of the point of discontinuity. So, that is the usual way that we should be 

talking about. 

Now, f itself could be let us say, f 1 plus i f 2. Now, what I could also do is I could also 

represent this F of omega (Refer Slide Time: 52:03) as real part plus an imaginary part. 

This is what we should have. So, what one can show rather clearly that R of omega, the 

real part of the Fourier transform can be obtained from this f 1 cos omega t plus f 2 sin 

omega t dt. I just simply opened up the integral line and then we performed this integral, 

that is, R of omega. And, the imaginary part will be minus of this; (Refer Slide Time: 

52:55) that will be f 1 sin omega t minus f 2 cos omega t dt. So, we can obtain the 

Fourier transform. 

See basically, you can understand that we are not talking about physical system. So, f of t 

is kept in a general form; it has a real and imaginary part. For a real function of course, 

you will not have that luxury. What happen is, if f of t is real, then we can very clearly 

see that f 2 is 0. So, R of omega would be nothing but f 1 t cos omega t dt. And, this 



integral is of course, from minus infinity to plus infinity. Cosine function is what? Is a 

even function or odd function? It is an even function. So, what I could do is, I just simple 

write it as two times 0 to infinity f 1 t cos omega t dt. So, whenever you can write it like 

this, (Refer Slide Time: 54:41) you call this as a cosine transform. The same way, one 

can obtain the value of i of omega. What happens to i of omega? Of course, this part is 

gone and this is a odd function and I am performing integral from minus infinity to plus 

infinity. So, the negative part will cancel the positive part. This will identically be equal 

to 0. So, we can make use of that property. Now, this is of course, true when we have 

said this f 1 t (Refer Slide Time: 55:32) is real and even; we have to be careful. If f of t 

itself is real and odd, then all these logic flips over; then, R of omega will be 0 and I of 

omega will be told two times the split integral. So, please do understand some of these 

subtle issues. 
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Now, let us enunciate some of the properties of Fourier transform. One of the properties 

is the property of linearity. What does the linearity property imply? That if I have a 

function f 1 t, whose Fourier transform let us call that as capital F 1 of omega, and 

similarly, if I have another function f of 2, whose Fourier transform let us say, it is given 

by F 2 of omega, then linearity simple says that f 1 plus f 2 is the Fourier transform of F 

1 plus capital F 2. So, this is a linearity property. Please do understand that it is not 

necessary that your actual unknown have to be equal to linear function; it could be non-



linear, but this transform is a linear thing. So, it can be applied to (( )); irrespective of 

whether the function is linear or non-linear, it does work out the same way. 

Now, there are some other properties, which are quite often used. For example, one, 

often uses the symmetric property. The symmetric property says that if I have a function 

f of t related to its Fourier transform f of omega, then I could show very easily, this F of t 

is a Fourier transform of 2 pi times f of minus omega. I am just enunciating; you can 

actually plug it in the basic definition and can show it. So, that is the symmetric property. 
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There is something called the time scaling property. The time scaling property comes 

like this that if I have a real constant let us say, alpha, then I have let us say, f of t given; 

I scale that time by this function alpha. It is a Fourier transform, would be given by this. 

So, this time scaling property actually is a very interesting thing. What it says? That if 

you have a function, which is stretched in the time plane, in the frequency plane, it is 

squeezed. So, that is what we already know from the properties of Fourier transform. If I 

have say periodic function going from minus infinity to plus infinity in the time plane, 

the corresponding Fourier transform is just a single point; it is a delta function. So, same 

thing happens; it is the other way round. If I create an impulse, I create a disturbance at t 

equal to 0, it excites all frequencies. 



Now, you know that what we were talking earlier about the frequency response viz-a-viz 

the impulse response; why impulse response is so much more preferable? In performing 

the impulse response, I am actually exciting all frequencies and the system can latch on 

to its natural frequency. But, in performing an experiment with frequency response in 

point of view, I have to really go scan and I will have to worry about if I am missing 

exactly the peak or not. So, you see, impulse response is a much better thing to do. 

I think we will stop. 


