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Today, we are going to discuss about, begin our discussion by talking about, wave 

packets, which are essentially regular and non dissipative; that means, the wave packets 

will keep appearing in space and time, at regular intervals. 

(Refer Slide Time: 00:16) 

 

This will be followed by wave packets which are essentially singular in appearance, in 

the sense that they will be aperiodic. This can also come about, because of the damping 

present in the system and as we said that when it comes to waves we do not distinguish 

between hyperbolic or dispersive wave. 

We draw an example of a dispersive wave from surface gravity waves, forming over 

liquids or fluids or water and what do you find? That the creation of the waves does not 



require the governing equation to be time dependent; that is why we have specifically 

chosen this particular problem of surface gravity waves because the governing equation 

is Laplace equation which is time independent. 

The space time dependence of the wave propagation comes about through the boundary 

condition and how this boundary condition affects that is what we are going to talk about 

with the help of these kinematic boundary conditions. This auxiliary condition sets up 

the waves and then we will talk about specifically various forms of surface gravity 

waves, how the trajectories are of individual particles. 

We also would like to relate its space and time dependence through what is known as a 

dispersion relation. That is a relation between the wave number k of the circular 

frequency, omega. This is what we would establish for those surface gravity waves. We 

can further classify the surface gravity waves into two depending on the depth of the 

waves. We are talking about either shallow or deep water waves and we will see how the 

particle paths are different for shallow and deep water waves. 

We will also notice one particular aspect of this dispersive wave is the existence of group 

velocity. Group velocity is distinct from the phase speed because the group velocity is 

important; because this is the speed at which energy flux is created in the flow. 

Basically, I thought that you are familiar with waves but, it is mostly done in the context 

of may be optics or acoustics. So here, I thought I given an example of a mechanical 

system waves and fluids happen to be very well researched topic; people have been 

looking at with much longer than any other fields. Probably you could be able to relate to 

other fundamental concepts of energy and its propagation etcetera. So, I thought in geo 

physical fluid dynamic example of the quite in order. 

Please note down that I am mostly following this number 1 and it is a very decent book. 

There is South Asian edition available also in the market. So, if you want to have a book 

of this type dealing with fluid mechanics engineer; it is a beautiful book you can really 

take a look at that. 
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So second one is a classic, this written by J. Lighthill. We owe most of our current state 

of knowledge to people like Lighthill (( )) those you have contributed in the last century. 

Of course, prior to that you have giants like Stokes, Bucyrus, Raleigh, they have 

contributed but, this one should be more than adequate for you to understand what we 

are doing and some of the things I am doing it from the numerical prospective. So, you 

will have to pick it from some book on numeric. 

(Refer Slide Time: 05:09) 

 



Yesterday, we are talking about system were we have not necessarily a single harmonic 

content but, you would have the presence of a continue of wave number and if you have 

that then, we were trying to figure out what happens when 2 neighbors interact. So, the 

neighbors here are characterized by the wave number k 1 and k 2. The corresponding 

circular frequencies are given by omega1 and omega2; their differences are given by d k 

and d omega. 

So when we look at their super position, we find that it is composed of two factors. So, 

first factor gives you amplitude that very slowly with a wave length of 4pi by d k and the 

time period of 4pi by d omega whereas, the second factor is nothing but a small variation 

of the original harmonic element which are given here. 

So what we notice that two neighbors interact via super position to give you a slow 

modulation of amplitude and that gives you a kind of a phase variation given by this 

argument and if you want to track constant x by t line that you can see, you would be 

doing it by following d omega by d k. 

So, what we find that the amplitude moves with this speed right, this Vg and since the 

amplitude is proportional to the energy, the other way energy is proportional to 

amplitude squared. So, this velocity is the characteristic velocity of the propagation of 

energies (Refer Slide Time: 07:00). I will show it with the help of some examples why 

that is true in a little while. 
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First of all, let us try to distinguish what we get by looking at waves and wave packets. 

So on top what you are seeing is a simple harmonic wave and which is characterized by 

let us say this wave number that we have plotted here for k 1equal to 20. This is the way 

the signal varies with phase that cause k 0, k 1 x is plotted here. 

Now, what we did? As shown in the previous slide, if we look at interaction of two 

neighbors that is what we try to do here. So, what we do is we take two neighbors of 

wave numbers 20 and 21 and see what happens and this is what you see; ok (Refer Slide 

Time: 07:52). So this is what you are seeing; that is embedded inside each of this packet 

you have a harmonic variation given by this because that is characterized by some wave 

number, that is 20.5; those are those rapid variations inside and the amplitude envelope is 

given by a wave number 1, the difference between k1 and k2. So, this is what you would 

see. 

So, if I go back to the communicating signal then, which one would be better? If I want 

to send a signal of let us say wave number around 20 or 20.5, which one would be 

better? Should I send it as a wave or should I send it as a wave packet? Why? 

You see the presence of this nodes and antinodes. At antinodes of course, amplitude 

doubles whereas, at the nodes they come down. So, you will have to basically see the 

energy carried is one in this rules, you can compare. I can compare that if I try to send 



two signals separately at 20 and 21, what will be the corresponding energy and I can find 

out what will be the energy here, if I send them. 

So, what we make? What is a conclusion? That you may not be able to get a tremendous 

benefit because energy is proportional to amplitude squared. So, here it is a fourfold 

increase at the antinodes whereas, it can come down to almost 0 in the intermeeting 

period near the node. So, you have to do that accounting and come back and tell me 

which one is better; I will look forward to that answer. So, that is the one way of 

communication where we can send of the monochromatic waves or we can send it as a 

kind of a packet. 

(Refer Slide Time: 09:56) 

 

So, there is another way signals are quite often transmitted. Those are when this signal is 

embedded in amplitude envelope, which renders its aperiodic nature. So what happens 

here, we have the basic signal for 20 x let us say; then, we modulate its amplitude by this 

Gaussian Function, then what happens is the signal information that you are carrying still 

corresponds to 20 x, but it is amplitude decay. 

So what happens as a consequence? You have almost zero amplitude outside this single 

packet; so this is now from a multiple packets of the previous slide, you have come to a 

state where you have single packet and by designing your system by choosing this 



exponent here I have shown you as 8. If I would have increase the damping and brought 

it to 32, then I would find that it will decay much more rapidly. 

The envelop size comes down in proportional to this exponent. So, what we find that 

such a signal if I try to pass through continuum I would be spending less energy because 

if I try to send this original signal it is going to continuously start for attenuation and 

decay, various other sources of decay; whereas, such an aperiodic wave or a damped 

wave packet is going to be rather very good to do that. 

In fact, later on will come back to another topic where you will see how signals are even 

transmitted as a single wave, solitary wave which may actually look like this envelop and 

that is what is called as soliton. We will talk about soliton and you would note that 

soliton is quite often used to transmit optical communication signals by pulses. 
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Now, let us get into some detailed look into one such mechanical waves, that is created 

over a vast expanse of fluid and you have a fluid at rest, then you just give a kind of a 

disturbance on the surface. So the surface will be deflected. Let us say, we have tried to 

create a single harmonic wave here, whose wave length is given by lambda and this 

surface wave that we are creating on the surface is firming over a layer of liquid of 

height h and the deflected control is given by eta x and t. 



In this exert plane we would like to figure out, what happen? How these waves are 

generated? What are their properties? That is the topic of our discussion today. To make 

the arithmetic, the mathematics simple, what we would be looking at is really a small 

amplitude wave. So, small amplitude means the slope of the wave is small that is given 

by a over lambda, a is the amplitude of the wave. So, that is small and we would also be 

talking about this amplitude are so small that they are insignificant as compare to a depth 

of the liquid. 

To make things further simpler, we will ignore the effect of viscosity. So, no viscous 

losses and we are talking about surface gravity wave and if we` look at the once that you 

generally see in lakes, rivers and ocean if we are not looking at very long wavelength 

cases, you can really neglect the earth rotation effect that shows up or to the coriolista. 

(Refer Slide Time: 14:15) 

 

Now, what do we get? The governing equation here comes from the mass conservation 

equation that is delta at v equal to 0 and where v is essentially for rotational flow. We 

can write it as a gradient of a potential pi, so it is here and you get equation 15. The 

Laplacian of 5 in that exert plane is going to be 0 and the velocity as I noted here, the 

components are given as the x component del phi del x and the z component is del phi 

del x (Refer Slide Time: 14:42). 
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Now, you are considering formation of wave over a flat surface. This is my mean 

unreformed datum and in this direction we are plotting z. This is wave, let us say the 

wave is forming (Refer Slide Time: 15:15). Basically, we have this surface at z equal to 

minus h and that is at the bottom, what do we expect there? There should not be any 

normal component of velocity. Since, we are doing in this analysis it will allow a 

tangential component but, no normal component. 

The first condition 16 corresponds to 0 normal velocity at the bottom of the bed, while at 

the free surface, at the mean position we will just simply say the fluid would not leave 

the surface, it should not go out and form a bubble here floating in the air; that of course 

is possible and feasible. People do it in multi phase pros but, we will not talk about it 

because here of course, ostensibly we will have wind air blowing. We do not worry 

about its contribution to the dynamics of this wave in the analysis that we are doing. 

So at the free surface we will say that the fluid particle could not leave the surface and 

this interface equation as I told you is given by eta xt that is your z. So, what I can say is 

I can define a function F which is nothing but eta xt minus z equal to 0 that defines the 

interface of geometry. 

When the interface deforms then, what we would expect? That it is total derivative 

would be equal to 0, where the total derivative is given by the local path, local time 



variation path. The other one that could be cause because of the motion of the fluid itself 

that is the convective path; where of course, you know that the fluid particle velocity on 

the interface, that could be written in terms of its components dx dt and dy dt like this. 

So, what you notice that this equation that 17a, we have written actually can be recognize 

as a vector equation of this form. So, gradient F. vb plus del F del t is equal to 0. 
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Now, if I define e cap as the unit normal on the interface then, the condition that we have 

said that there is no fluid through. So, what will happen is the velocity of this fluid 

particle that is vb and v is the velocity of the interface they would essentially be same. 

So, there is no discontinuity. So, that means the dot product of that with respect to e cap 

equal to 0, where of course, if F defines the interface e cap is nothing but, gradient of f 

divided by the modulus of that gradient. 

So, we can see that at the interface v equal to vb. So, we can replace that vb by v; 

basically, trying to mix up Allerian Legrangian description that we have decoupled here, 

it was coupled because vb was Legrangian velocity whereas, this v is the corresponding 

Allerian discretion; so that is what we simplify here. What we also note that F interface 

was given by eta x t minus z. If, I try to find out what is del F del t, it will be simply 

nothing but del eta del t and the gradient F you can see is going to be eta x. So, that will 

be del eta del x and this path will give me just the k component. 

So, del F del z will give me the k component and that is what we have written here, 

gradient of F is eta F is that of particle F and plug it in there, then you get this expression 

and this is at the deform height (Refer Slide Time: 20:00). So, it is to be applied at z 

equal to eta. 
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As I told you that we began this analysis, saying we will be doing some kind of a 

linearization looking at small amplitude waves. So what we would be doing is, we will 

be making some additional simplification at this condition that I am applying at the 

deform interface would be reflected back on the mean interface; that is what we are 

saying that condition will be transfer to z equal to 0. 

If you look at the last equation, this middle term u into eta x is a kind of a product term 

every quantity here is small. So, del eta del t is small, w is small, but you look at this, this 

is a product up to small term. So that also we can neglect in a linearized analysis and that 

is being said that u eta is negligible. 

What happens is the condition that we had written del F del t equal to that gradient of F 

times v equal to 0, simplifies to this condition. This is a consequence of linearization and 

transposing the boundary condition at the mean interface. So with those two conditions 

as additional approximation, we arrive at this auxiliary condition at the mean interface. 

Now what we have? We have two conditions: one condition is as we wrote it down that 

w that is equal to del phi del z equal to 0; that is your equation 16 that we are referring to 

here. In addition, we have this condition del eta del t at the mean interface. These are two 

kinematic conditions. 



Now, in addition we would also like to derive some conditions which originate from the 

governing equation. Those are called the kinetic conditions and that comes out from the 

governing equation simplified for the present purpose. So governing equation, generic 

equation is the Navier-Stokes equation and with all this assumptions that we are making 

about irrotational flow, small amplitude waves etcetera will allow us to simplify to 

Bernoulli’s equation. So if any of you are interested, these are the steps that you follow. 

So, equation 23 is your Navier-Stokes equation and to simplify, what we have done here 

basically this convective actuation term that appears here is replaced by this vector 

identity. You can notice that this is nothing but gradient of v square by 2 and that is what 

is written here and this term del cross v is the vorticity omega itself, that’s what we get. 

This is another way of writing out the Navier-Stokes equation that we keep solving all 

the types in fluid mechanics, aero dynamics etcetera. 

Now, what we are going to do is we are going to simplify this equation. Simplification 

will come about by omitting the viscous term that is explicitly there and then we will 

also say that the flow is irrotational, so omega is 0 and this term will also drop out and b 

has written as gradient of a file. 

So, this equation that we have (Refer Slide Time: 24:09) we will write it as del del t of 

gradient of phi and this term we can put it on the right hand side. Suppose the body force 

is coming through the gravity. So that f is nothing but gradient of gz and this is what 

happens to your Navier-Stokes equation. 
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This term comes from the del v del t term, this comes from the body force term, this is 

the pressure gradient term and this is one path of the connective actualization which 

survive after irrotational approximate (Refer Slide Time: 24:20). 

This is what you have is the special gradient of that quantity is 0. So, you can integrate 

and this is what you get. This is the general formation of Bernoulli’s equation that you 

may have done, if you have taken any course on fluid mechanics before, this is little 

more general because we are talking about the unsteadiness of the flow as well. 

Now, what you can see that if you are doing a linear analysis then this could be actually 

put in this term, we can redefine this phi; we include that F 1 term and of course, this two 

term are basically non-linear because u square and w square, so that you omit and you 

get this as that equation. So, this is your Bernoulli’s equation. 

Now, I was expecting that someone - some of you- would quiz me on the fact that here 

the governing equation or Laplace equation. What happened to the discussion that we 

had made about boundary conditions? How many boundary conditions we are talking 

about? Why we are going through all the steps? Various conditions we are seeing here. 

What is the domain? See we are looking at this few problems in the exact place. If, I 

want to compute, so in the fluid path z is restricted between the deform interface and the 

bottom, what about x? Anyone, what about x? What is the range of x that we are talking 



about here? Web length, basically, we are talking about waves being getting created. So, 

it is a basically unlimited domain problem. It is the absolutely known limit. 

What we are looking at in a sense, unbounded domain in the x direction and we all 

looking at system which is not visited upon by losses, because this terms have been 

omitted. We can afford to take a very large domain and then what happens is we can 

look at the dynamic of the flow in the z direction and that is why we are struggling with 

getting some condition here, some condition there (Refer Slide Time: 27:04). 

So in a sense, in the back of our mind, we are thinking in terms of some kind of 

separation of variable and that is why we are looking for some kind of two sets of 

condition, one at z equal to 0 and another is z equal to minus h; that is what we are going 

through and you are seeing that needs little bit of care here. 

(Refer Slide Time: 27:37) 

 

What happens is we also look at the pressure variation in terms of some datum. Datum is 

given by rules the z, what we could do is (( )) above in the air, part of the problem. We 

could put that pressure equal to 0. So, that is your datum. 

Then what happens is the exertion of pressure would come through this term; one is due 

to the variation of the velocity field because of this unsteady deformation here and the 

unsteady deformation also brings about the change in potential energy. So, that comes 

through that term. What happens is, because we are doing linear analysis and we said 



that we are going to transfer the condition from z equal to eta to z equal to 0. These are 

the fix. 

What happens is now we have three auxiliary conditions to solve the governing 

Laplace’s. Now, I already answered this question, so you know the answer that we are 

thinking of solving a problem which is unlimited in the x direction. That is why, we are 

using a trial solution of this time a cos of kx minus omega t. So, x can go from minus 

infinity to plus infinity. We are not restricting there and a is some kind of amplitude of 

that surface wave and eta is that surface interface displacement. 

Now this is rather interesting, you know many times in computing just because some 

terms do not appear explicitly, we cannot forget about it and that is why this example is 

also very good one because we saw the governing equation is a Laplace equation. 

There is no mention of the time variation, but we know the problem that we are trying to 

solve has this unsteady variation of the interface; so surface waves are getting created. 

So, that is what you will have keep in mind that just by looking at a governing 

differential equation, do not make up your mind in thinking what you are solving. 
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Here is a case, time is implicit and that is why what we have done is we have used that 

Trans solution where time appears explicitly like a wave part that is what we saw in the 

d'alembert solution. If I have a wave, it will have the argument going like this, a 



combination of x and omega t. They would not appear separately, they have to come 

together to have a space time variation as a wave. 

Now, if I look at this space time dependent problem, what I could do? I told you that I 

would like to write it in terms of a wavy part; that is the wave propagating in x and t and 

its amplitude would be a function of z. It will depend on at what height you are looking 

at. You substitute this in your Laplace’s equation, you get this ODE that would give you 

step forward the solution F of z combination of a two exponentials. These two constants 

can be figured out this condition that del phi del equal to 0. 

If I plug that in what I would do is that should imply del phi del z equal to 0, would 

imply df dz equal to 0 at z equal to minus H. You plug that in will give this solution, this 

condition relating d and a, because also that we have worked out the interface the 

interface condition was given by what? We wrote it down that the condition that we 

would like to apply would be del phi del t plus g of eta equal to 0 at z equal to 0. 

What I do? I have the Trans solution phi, so I try to find out what that del phi del t is? 

That will give me minus omega F and g of eta will give me g and a cosine this, so that 

would give me this solution (Refer Slide Time: 32:00). All of you can see that so, if 

basically application of this condition using the expression for phi here and eta as we 

have written down. We substitute and you get the equation there. 

So, you have obtained the value of a and b as written here and put it back there, because 

you know what that solution is A e to the power plus kz plus b2 minus kz. We substitute 

it there and you would find that they will give you this hyperbolic function, cosine 

hyperbolic function and sin hyperbolic function will come (Refer Slide Time: 33:05). 
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Having obtained the velocity potential you can calculate the velocity by differentiating it 

with respect to x will give you u, differentiate this with respect to z, you will get w and 

what is left? That is of course kinetic condition; the kinetic condition would come about I 

think, I have misguided you that is what happens then you are in a rush sorry this is not 

this is the kinetic condition and I mix it up for you sorry for that mistake let me just work 

out how do I get that… 

See, that the kinematic condition that we had at z equal to 0 that was written down here 

22. So that was your del eta del t should be equal to del phi del z and eta of course, is a 

cosine kx minus omega t and phi, we are writing as A e to the power kz plus B e to the 

power minus kz and sin kx minus omega t. 

Now, del eta del t would give me minus plus A omega and we will have to apply that z 

equal to 0, that will give us A of k minus B k this will approximate as it is. Suppose that 

gives that condition 28, we just nock this off, so you get A omega equal to k times A 

minus B sorry for that mistake (Refer Slide Time: 35:50). 

Now, we have taken care of both the kinematic condition to derive A and B. What is left 

now for us to really explore the kinetic condition? The kinetic condition is a Bernoulli’s 

equation that we have written g of eta equal to 0 and we have the expressions for phi and 

we have the expression for eta. We can figure out del phi del eta would be minus A 



omega square by k and cosine hyperbolic k times z plus H by sin hyperbolic kH  and 

cosine k x minus wt. 

So, what you are getting from here that will be minus a omega square by k and there is a 

part, I have not written that; take down, I will write rest of that and plus g of a equal to 0 

(Refer Slide Time: 37:50). That is basically done tells you what you are going to get is 

this, we are going to apply at z equal to 0. This will simplify to cosine hyperbolic kH. 

What we are getting is a here also goes off, so we are going to get omega square equal to 

gk and sin hyperbolic by cos hyperbolic that is given tan hyperbolic of kH. 

This basically tells you what this relationship between omega and kr, so what you do? 

You write down this expression as we have done here in 32 that relate your omega with 

k. So this is what we called as the dispersion relation. Why did you call dispersion 

relation? We will shortly discuss what we notice is, we are relating the time variation 

with the space variation in the k omega place, your governing equation did not have that 

information because that was a Laplace equation. 

See, the reason that we went to k omega space is because our physical space does not 

allow us to have that information. There is no explicit dependence on time from the 

governing equation. How did we get this? All of this came through those kinematic 

conditions and the kinetic conditions which was time dependent. 

The boundary conditions - time independent boundary conditions - give rise to this. So, 

this is what we have been talking about for quite some time now but, space time 

relationship is often obtained not from the governing equation but also through the 

boundary condition. Here is a crystal clear example of how it happens. 

Here this is a mistake, this should be capital H as I have done it there, this is a correct 

expression gives me that is why I have not loaded the load case after keeping all this 

throughout all this small mistakes and then, it will be loaded may be tomorrow (Refer 

Slide Time: 40:20). 



(Refer Slide Time: 40:44) 

 

So, this is what we call of the dispersion relation and now, we should be talking about 

what dispersion is, but for this purpose gravity wave you can talk about the phase speed. 

Phase speed is by definition omega by k, so we get this. Now, you can also distinguish 

two cases of dispersion gravity wave. Consider the case, where it is forming over a very 

deep layer of liquid, so that H by lambda is a very large and then what happens? sin 

hyperbolic kH takes the asymptotic value of 1 and then this part is 1. So, you get t equal 

to g lambda by 2pi. 

So that is for your deep water wave and for shallow water on the other extreme would be 

where H is negligibly small. So that tan hyperbolic kH can be approximately kH and if 

you do that you will notice that this kk will cancel out and you get this. Now, I waited 

this one to explain you what is the meaning of dispersion that you would see if you 

compare this expression given in 34 or 35? In 34, what you are seeing that c is a function 

of k. 

So, different k component will have their phase varying at different rate whereas, if you 

look at the shallow water case, all k components will go at the phase, so what happen? 

Initially, if I create a small disturbance somewhere, all its harmonic component will 

travel with the same speed a shallow water case. If it is a shallow water case, then 

whatever may be I have created arbitrary disturbance like this. Let us say this is my say x 

and this is let us say f of x. 



Now, given this function you can immediately convert it into a wave number component. 

You would probably find that this is a sort of a function like this or whatever it is let us 

say, it is like this band limited, but it is essentially near the i. So what is the situation of 

the shallow water wave? All of the k components will be travelling with the same speed 

in terms of its space. 

Now, what will happen? You would notice that this initial disturbance each harmonic 

component going with the same speed that in later time, you will see there will be a same 

phase relationship as there were x t is equal to 0, that means what? Initially If I have a 

compact disturbance, it remains compact; it does not spread apart that is your dictionary 

meaning of dispersion, it has not dispersed. 

So, that is the reason that we have not mentioned what exactly we mean by dispersion. 

Only with an example here, we can very clearly see that if c or the group velocity 

becomes a function of k, then different component will travel at a different rate and 

initially whatever may be the their locations are, they will disperse with respect to each 

other that is what we mean by saying that shallow water waves are non-dispersive. 
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So what happens? In almost all physical system which displays the presence of waves, 

you have this first responsibility to really find out whether the system is dispersive or 

non-dispersive. Then, you can come out with your competition strategy to follow that 



physical trend. This is the one of the way that we go about the computing. Now, let us 

look at some of the other interesting aspect of gravity waves. We have the expression for 

phi well it is some are there, I have written del phi del t but phi is there. 

So, what we could do? We could try to find out, what these particles are doing on the 

interface or anywhere in the fluid for that matter that we can find out by fixing our gauge 

or an equilibrium point which I may call as x0 and z0. Let us say it has been port out and 

the port out coordinate is given by x0 plus xi 0 and z0 plus eta0. This (()) of course, 

comes about associated with a velocity u that is the partial of xi0 with respect to delta t 

and w is a partial of eta0. 

Why did I write partial here? Why should not I write the ordinary derivative? See, this is 

something like your coordinate and then, finding out its time derivative. Basically, what 

we are doing while we are noticing the coordinate of the particle, but we are still keeping 

x0 and z0 as fixed so, we are looking at that particle whose equilibrium location was 

given by this. That is why I wrote this although it is a kind of Lagrangian description but 

we still talk about a partial derivate. 

Since, we have 5 expression, we can get u that is this; that is, your u velocity that we 

have noted and similarly, the w velocity is this and this are related to this del xi not del t 

del eta0 del t. So, what you can do? You can integrate and you get this two expression 

say for integration would give you those two coordinate and the locus of xi0 and eta0 

will be obtained, if you eliminate 3 from this solution (Refer Slide Time: 47:15). 
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If I just simply find sin square kx0 on this, so that is why we have eliminated equilibrium 

coordinate and t and that will be all given in terms of z0 and A as amplitude of the wave. 

You can very clearly see this defines an ellipse; the ellipse is given by this semi-major 

and semi-minor axis. You notice that as you go towards the bottom of the liquid, z0 is 

going to progressively go towards minus H. 

So what you would point that both these acts are going to decrease, because is the 

argument comes down both cosine hyperbolic as well as sin hyperbolic reduces. You can 

also see at the bottom of course, it will all become 0; whereas, if you look at all particle 

from same vertical column, there all travelling would be same phase that is what is also 

implied in this equation of ellipse because they are all in same phase. 



(Refer Slide Time: 49:09) 

 

So, coming back to our introduction to group velocity, we have obtained dispersion 

relation, which is omega equal to square root of gk tan hyperbolic kH; differentiate it 

with respect to k to get the group velocity. If you want me I can derive this, but it is 

straight forward, you can work it out. Now, you can again look at this group velocity 

value for deep and shallow water wave. 

For the deep water wave of course, kH goes to infinity, sin hyperbolic kH goes to infinity 

and the second part will go to 0. You will get the group velocity are simply c by 2; 

whereas, on the shallow water waves approximation limit sin hyperbolic 2kH would 

approach 2kH, this will give you 1, 2 we will cancel it 2 and you get this. 

So what happens? You notice that the energy in a deep water waves travel slower as 

compared to the phase speed whereas, for the shallow water wave they are just the same. 

You also notice that problem that we had looked at that 1d wave equation, if we would 

have looked at solutions from amplitude cos plus cos kx minus omega t. This also will 

give you omega equal to kc. If you calculate d omega dk, we will find that is equal to c 

so, that is here. 

So this is an example, where you can see that Vg does not depend on k. Here is a model 

equation which you can imply to figure out, how your numeric is, because your physical 



group velocity tells you that if you create some kind of initial condition, it should remain 

the same; it will simply translate to the right. 

If you try to solve it to the bad numerical method, you can see that even if you give a sort 

of a wave packet it will break upon because of the problem of numeric. That is 

something we should look at, so group velocity is a very good indicator for us to judge if 

our numerical method adopted is a good one or not, because that is the speed at which 

the energy of the system ((travels)) that is much more important for us to understand.  

Now, this path let me see, if I can quickly zip through and I explain to you what exactly 

we are looking at, next I made a statement here, what the energy flux is happening when 

we have this kind of a wavy disturbance at the interface? 

(Refer Slide Time: 53:09) 

 

If I look at a wavy interface, the energy flux would be created because there is a pressure 

excursion, so pressure is varying as you go along in the x direction. So, what we could 

do? If we keep our attention fix at a particular say perfectly harmonic component and 

this is your x equal to 0. 

So what happens? We have seen the energy flux across this plane will be the pressure 

work done by the fluid in this path and pressure, the work done on the fluid on this path. 

This is your x equal to greater than 0 and this energy flux; we can work it out in terms of 

pressure times, velocity integrated over the whole height. 



You can imagine this is your bed; you are basically integrating over this whole range. 

That is what this limit tells you, this is the special time velocity gives you the energy flux 

term. If we are talking about a time averaging, so this angular bracket indicates a time 

averaging operation. 

Now, pressure as we have noted comes about from rho g sorry rho gz plus set of 

fluctuation term. This is your rho gz term plus some fluctuating pressure. This is your 

mean component (Refer Slide Time: 55:26). If I substitute it there so, I will get two 

components minus H to 0 so this will be fluctuating part and get as shown. 

If I do a time average of this, it will reflect on this and this time average itself. If I am 

looking at perfect harmonic seen over one wave length, this will go to 0. So, all we need 

to do is look at this and if you recall the Bernoulli’s equation, we wrote they are the 

fluctuating pressure was given like this and whatever we add here g eta (Refer Slide 

Time: 56:20). This is the mean part that is, what we have written there that part is got. 

So if I leave it like this, p prime works out as rho del phi del t and phi expression that we 

have written down and what we will find that no this to this result this is here will be 

minus (Refer Slide Time: 56:40). Since we have the expression for phi, we will get p 

prime would be equal to minus rho time del phi del t, we have that expression; we will 

get rho a omega square by k. 

So basically, if I look at this flux term will be p prime times u, so u also we have written 

down the expression before, we have the expression of u here. So, we can plug that 

expression for u and we have the expression for p prime and we look at this (Refer Slide 

Time: 58:15). 



(Refer Slide Time: 59:02) 

 

So that will find both of them will contribute a cos of kx minus omega t that is the time 

varying path, time averaging will relate to that; so that will be cos square one coming 

from p prime, one coming from u that will be that and we have rho a square a will comes 

from u, also this and this expression would come here. In addition all just please allow 

me to write this term, sorry, this will here contribute to that (Refer Slide Time: 59:05). 

Ok, I think, I will stop here; I will wrap it up in the next class. So, we will work out 

couple of more steps on that we will continue. 


