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In today’s fourth lecture, we are going to talk about only the explicit Runge-Kutta 

method because that has been found to be one of the most accurate methods. 

 (Refer Slide Time: 00:16) 

 

As we go along in this course, we will find out why it is preferred, and we will also talk 

about another classification of differential equations - time dependent differential 

equations. 

This is related to the non-autonomous versus autonomous system, and when we express 

it as an evolution equation, if the right hand side does not explicitly involve time, we 

have what is called as the non-autonomous systems. And in this course, we will be 

mostly focusing our attention to non-autonomous systems because many of the 

applications will see that time does not appear explicitly. And coming back to various 

Runge-Kutta methods that we talk about, we begin by two stage Runge-Kutta method 

which we have shown here as a RK 2 method. This will be followed by RK 3 and RK 4 

methods. However, we will be not discussing in greater detail about RK 3 method 



because that will be given to you as an assignment that you will be doing as a first 

assignment for this course.  

Having exhausted this discussion on Euler and Runge-Kutta method, we introduce the 

multi-step method by talking about three time level methods. And in this, we will be 

talking about Adams-Bashforth scheme and also the leapfrog schemes. I will find out the 

pluses and minuses, and why we do not want to use it. Finally, talking about this 

ordinary differential equation solution methods, we need to talk about what are called as 

stiff differential equations. 

If in the solution of this ordinary differential equation, multiple length or time scales are 

involved, then what we encounter is a specific difficulty which is characterized by this 

term called stiff differential equation characterized by the parameter stiffness ratio. And 

then, we talk about the classical methods of solution of stiff differential equation by 

trapezoidal method. This will be the final topic of today’s talk. 

(Refer Slide Time: 02:52) 

 

Here is the problem. We noted that you can adopt single step method. From the Physics 

point of view, that you do not get into numerical or spurious mode, but you could have 

multi-stage, and what is that, and the first milestone in that road would be a two stage 

method. 



We have talked about some of those; we have talked about Euler-Cauchy method. We 

have seen that if you are matching the solution from t n to t n plus 1, you have to 

evaluate two additional quantities which we called as K 1 and K 2. So, in that same class, 

Runge-Kutta method is also formed. They are single stage, multi-stage methods. 

(Refer Slide Time: 03:45) 

 

We noted that, if we are trying to solve an equation of this kind and we are going from 

one time step to the next one, then the Euler method is required that you take a slope here 

and you extrapolate, and that is where you get, and that could amount to some error, or 

you could draw this tangent here, which is the parallel to this, and you could get this; that 

was your backward Euler method; that is what we talked. 

So, here, in the multi-stage method, you see that you generate all your information from 

either of these terminal’s points; instead, you also look for some intermediate point from 

where you keep on getting information and use them, and improve the accuracy of the 

method.  



(Refer Slide Time: 02:52) So, that is the whole idea that you do get information from 

multiple stages in between these two time levels t n and t n plus 1. And eventually, you 

get the solution as a weighted average of all these information that you have culled from 

these terminal points plus those intermediate stages. 

(Refer Slide Time: 05:14) 

 

So, that gives you a normal leverage and freedom to choose methods from; for example, 

if you restrict your attention to just simply explicit methods, then you would keep on 

calculating let us say slopes at m such points; so, m could be at your disposal; you decide 

upon how many stages you would like to. So, we are suggesting that, we choose m such 

methods, and we have chosen these stages - intermediate stages in such a way that each 

K is could be obtained from the information you have collected up to that point. 

So, for example, we have information at t n; so, we could immediately calculate K 1. 

Having obtained K 1, what we could do is we could obtain the solution at a next stage 

which is in between t n and t n plus h so that this c 2 is less than 1. So, you have some 

intermediate point which is c 2 h from t n, and then, there, we also calculate the 

dependent variable as some kind of a weighting of what we have just now calculated in 

the previous level K 1; that means, in evaluating K 2, you need K 1. In evaluating K 3, 

you would require K 1 and K 2, and so on, so forth. So, this is essentially a recipe for 

explicit methods. 



So, that is what, we said that, we will be keeping our attention focused to explicit 

methods. We will obtain the slopes at m such stages. Each K i’s will be obtained from 

the cumulative predecessors. That is a distinct feature of all explicit methods and 

eventually you get the final accepted solution as the previous time step solution plus this 

weighting factor times this K1. 

So, these K i’s are nothing but something like your delta u. right So, they are the delta 

u’s and this W 1 W 2 and W m - they are the weights that you associate with the method.  

So, essentially, now if you look back, you have to decide upon what are these 

coefficients - c 2, c 3, all the way up to c m, and here you have a 2 1, a 3 1, and a 3 2, and 

so on so forth, and finally, these weights are also our unknowns. 

(Refer Slide Time: 07:50) 

 

So, these are basically the parameters of the Runge-Kutta methods and they have to be 

obtained. One of the easiest ways is to work out the Taylor series expansion of the 

function u n plus 1 in terms of u n, and the number of terms that you match from your 

theoretical Taylor series expansion. 



(Refer Slide Time: 08:16) 

 

So, what we mean by theoretical Taylor series expansion is, we are writing u of t n plus 1 

– this we are going to write u of t n. Since your governing is, we are looking at d; so, if 

this is what (Refer Slide Time: 08:42) we adopt our governing equation as, then we can 

keep on adding whatever information that we have; delta t which we will be calling as h; 

So, h times of u prime and h squared u double prime, and these are all evaluated at t n, so 

on and so forth. 

So, this is your analytical expression. Whereas, the numerical solutions we have denoted 

so far with the simple superscript like this, and we have said that our method would be 

something like h phi of t n plus 1, t n, u n plus 1, and of course it will also be a probably 

the function h also. 

So, what you essentially do is - you obtain two Taylor series - one from the analytical 

expression; one from the numerical method. You keep matching them, and the number of 

terms that you match from either side would define your order of the method. So, if I go 

up to say h squared, that is a second order method; if I decide to go up to h cube, that that 

will be our third order method, and so on and so forth. So, this is the essential idea in a 

nutshell. 



(Refer Slide Time: 10:09) 

 

So, you can now just work out. One such simplest possible method would be an explicit 

second order Runge-Kutta method. So, here we are of course fixing m equal to 2, and we 

will first evaluate K 1; that would be the delta u at the starting h; h times f evaluated at t 

n, u n, and then, next we will be adding to this path, the independent variable 

incremented by c 2 h, and the corresponding dependent variable incremented by a 2 1 K 

1, and so that the accepted solution at the n plus 1th of level would be the predecessor 

plus the weighting of these two increments K 1 and K 2. 

So, very easily, you can see that 1,2,3,4 - we have four unknowns. So, for this second 

order method, we will have to work out some ways and means of evaluating these four 

unknowns.  



(Refer Slide Time: 11:18) 

 

So, what we do is, as I told you, we will write down the theoretical estimate in terms of 

the Taylor series, and as you can see, u prime as given here is f; so, that is your h times f 

u double prime. Now, you have to realize that f is a function of u and t. So, if you take u 

double prime, that will give you the partial of f with respect to t plus f times f u, and the 

following term - the third order term, would have many more such combinations f tt plus 

2 f f tu plus f square f uu plus this and so on, so forth. 

(Refer Slide Time: 12:17) 

 



So, we could keep on writing it all down and the way we have written down K 1, K 1 

was simply h of f evaluated at the previous h, and K 2 we said would be h of f evaluated 

at t n plus c 2 h and u n plus a 21 K 1. So, that is the expression for that. So, if I expand 

this K 2 by h, that is basically a Taylor series expansion of this about t n and u n, and that 

gets you there. 

(Refer Slide Time: 13:08) 

 

So, basically, you have this K 2 by h, and then finally, what you need to do is, you would 

be writing this u n plus W 1 K 1 plus W 2 K 2. 

(Refer Slide Time: 13:25) 

 



You have this expression for K 1 and K 2, and then, you keep using those information in 

terms of u and f, and this is what you get; u n plus 1 should be u n plus W 1 into h f plus 

W 2 into h, and these are those expressions that we have written down as Taylor series. 

Expansion of that, expanded about at t n would give you this whole set of terms. So, 

basically, talking about a second order method, all you would be interested in writing 

down the coefficients on either side of order h and order h squared; order h you can very 

clearly see, here, the coefficient is would be, analytical expression would be 1 itself. So, 

that is that; h itself and coefficient is 1; whereas here you are seeing that it should be W 1 

plus W 2(Refer Slide Time: 14:25). So, that is your order h condition. 

Similarly, order h square would give you, from here you can see this W 2 h into h c 2 f t 

will be one such term, and then there would be another term coming from there - W 2 h 

into h a 2 1, and that is multiplied by f f u, and if you look at the corresponding analytical 

expression, this is what we have. So, this is your del u double prime. So, this is basically 

u double prime here; it is nothing but this quantity - half times f t plus f f u (Refer Slide 

Time: 14:57) 

So, what you notice is that 51 a is a direct equation that you can work with. What about 

this? This equation somehow depends on your problem because the problem defines 

your function f. So, what happens is - for a general methodology, you should not be 

talking about any arbitrary function, but if you do, then you note that these coefficients 

of f of t and the coefficient of f f u must also independently match because that would be 

the most general way of doing it, and if you do, that would actually yield two conditions.  

So, basically you have one condition from order h and two conditions from order h 

square; that gives you three relations, but you have four unknowns. So, the easiest way is 

to solve it parametrically; you choose any one of them as a parameter; let that be c 2; 

then, you can immediately see that, from these equations, you would get a 2 1equal to c 

2, and W 2 you can work it out from here (Refer Slide Time: 16:20), and W 1 is 1 minus 

W 2. So, that will give you these conditions. 

So, basically, we have solved it in terms of the parameter c 2. We still have to decide 

upon how we go about fixing c 2, but I may draw your attention at what we had done. 

We had taken t n and then we added a fraction of the time step to go to the intermediate 

stage. 



Whenever you have explicit dependence on t, you call such systems as non-autonomous; 

they are called the non-autonomous system. In contrast, you can have autonomous 

system where the t does not appear explicitly. So, you would not have this part, if you do 

not have that part (Refer Slide Time: 17:05), that is what we call as autonomous system. 

So, that means, we are talking about something like c 2 equal to 0, but then, you may say 

that this looks difficult because c 2 appears in the denominator; it is not that difficult; 

you can work from the first principle and develop that. We will be actually doing one 

such example of autonomous system and we will work out for a higher order system, and 

then you will know what I am talking about.  

(Refer Slide Time: 17:39) 

 

So, if I now write down everything in terms of c 2, then u n plus 1 would be u n plus 

these two weighting functions times the increment K 1 and K 2. So, one way of fixing c 

2 would be to look at what we have omitted while working out this strategy. That would 

be the next term, that we have omitted, that would be order h cube term, which is nothing 

but this (Refer Slide Time: 18:19 to 18:40), and since W 2 c 2 is h 2 2 h, we can club it in 

there and then we can see that it is the truncation error term is the leading term or the h 

cube term which will work out like this. So, we have the leading truncation error term 

written in terms of the right hand side of the equation that we are trying to solve plus our 

choice of c 2. 

 (Refer Slide Time: 19:13) 



 

Now, there are various ways of looking at it - how to fix c 2? They are something called 

Lofkin’s bound which tells you that you could work out and estimate for the quantities 

that you see in your truncation error; that would be del t i del u j. So, this mixed 

derivative is bounded by this Lofkin’s prescription; that will be l i plus j m to the power j 

minus 1. So, your i and j would of course go from 0, 1, 2, etcetera. So, if you do that, you 

can immediately see what you get. Suppose, I choose i equal to j equal to 0, then that 

would give me an estimate for f. So, mod f would correspond to i equal to j equal to 0; if 

I put that, it would give me this bound, that mod f should be bounded by m.  

Now, if I look at this partial derivative, so that would imply what? i equal to 0, j equal to 

1; And that would be bounded by this quantity. L and M which are some finite bounds or 

finite numbers; so, that we do not have to know in general, but for given specific 

function, we can work out these quantities. 

So, f of t would be similarly i equal to 1, j equal to 0, and that will give you this. And 

you could work out, similarly, the other relations: f of t t which is i equal to 2 and j equal 

to 0; that would be bounded by L square M, and f t u would correspond to t equal to i 

equal to 1, j equal to 1, and that would be bounded by L squared, and this will be 

bounded by L squared by M. 

So, if I use this information from these bounds, then you could see that t n plus 1 could 

be bounded by M L squared. We are looking at the leading term, as that would be 3 one-

sixth minus c 2 by 4 and plus one-third. So, this is one way of looking at the problem. 



So, what? We are saying that this leading truncation error term would be given like this. 

So, basically, in essence, we have substituted these bounds in this last equation 55; that 

yields this coefficient as 3 and this one gives you one third (Refer Slide Time: 22:42) 

So, basically, then you can immediately see that this will be minimum, if I choose c 2 in 

such a way that this quantity here is equal to 0. right So, that is the one way of doing it; 

however, we need not have gone through all this. If you are smart enough, you can 

immediately reason it out here, that for any arbitrary choice of f, you can see that; this, 

we do not have any control right. So, only thing that you can exercise control in reducing 

the truncation error would be to put this first set of term equal to 0, and that immediately, 

such that this coefficient equal to 0. So, without even bothering to work out all these 

bounds and etcetera, your common sense will immediately tell you that if you put this 

quantity in the first bracket itself equal to 0, then you have done. So, that is equivalently 

choosing c 2 equal to two-thirds.  

(Refer Slide Time: 23:37) 

 

So, this is one way of developing a Runge-Kutta method. So, you choose c 2 equal to 

two-thirds; that will immediately give you a 2 1 equal to two-thirds and you can work 

out W 1 and W 2 like this. So, this is essentially the step that you would be doing in 

writing a program that you could write K 1 and K 2 in terms of this, and eventually W 1 

and W 2 will assist you in fixing the solution at the next step. So, that is one way which 

ensures reduction of error; so, that is the choice 



(Refer Slide Time: 24:31) 

 

Well, you could also see that, here, if I would choose c 2 equal to half, then W 1 

becomes equal to 0, right and then what I need to obtain is just simply W 2. And then, I 

can get this solution in terms of K 2 alone because W 1 equal to 0. So, this is what is 

called as modified Euler-Cauchy method. So, it is a multi-stage method, but again, what 

you would be doing is you would be evaluating K 1, but you do not need to store it; 

instead, you can directly obtain K 2 and obtain the solution at the next step in terms of K 

2 alone. So, this is the way that these methods are worked out.  

(Refer Slide Time: 25:25) 

 



So, if I want to go little higher, for example, we are looking at a fourth order method; so, 

that I will call as R K 4 method; Runge-Kutta four stage method, and let us make our job 

simpler by considering an autonomous system. Although it may appear to be sort of a big 

restriction, but most of the practical problems that you would encounter would be of this 

class. So, most of the problems that we come across in computing belongs to 

autonomous class, so that giving up the dependence on t is not a very serious one. So, the 

methods that we are going to talk about are going to be quite useful. 

So, since we are talking about four stage method, we would be evaluating all these four 

increment functions: K 1, K 2, K 3, and K 4, and you can see the pattern that you do not 

have dependence on t, but you have dependence on u alone. So, the K 2 will be 

incremented by a 2 1 times, K 1 K 2 will be incremented by a 3 1 K 1 plus a 3 2 K 2, and 

K 4 would be incremented by previous three increments K 1, K 2, K 3 here itself, and 

final solution would be the weighting of all these increments.  

So, all that needs to be done is essentially the same step that we have worked out just 

now. We will be working those expressions out for the Taylor series, if I look at K 2, so, 

define a as equal to K 2 by h; then, we can expand it, and this is how it is noticed that K 

1 itself is h times f. So, you can plug the main. And what you are going to see? That K 2 

will be h times f and this gives you a h, and there is another h. So, it will they have the 

second term h squared a 2 1 f f u.  

The next term would come from here. That will be h cube by factorial 2 and if there is a 

a 2 1 square and we have f square coming from here and this f u u remains as it is and the 

next term would give you this. By now, you have realized that, having chosen the order 

of the method, you just need to keep terms up to that order only. So, that is what we are 

doing. We are just retaining terms of 2 h 4 because it is a four stage method. So, that is 

your expansion for K 2. Similarly, K 3 would work out like this and you can notice that 

you have to use all this information on K 1 and K 2 in K 3. It is a little involved and you 

get this whole set of terms when you retain terms up to h 4 alone.  

You realize that, if I were to be doing exercise for a non-autonomous system, it would be 

lot more tougher because there would be f t and f; mixed derivatives would come; that is 

why I try to keep it controlled. To look at the way these methods are developed for this 

autonomous system, non autonomous system is little more involved.  



(Refer Slide Time: 29:14) 

 

So, the last thing that you need to do is find out this K 4 quantity; K 4 by h; that would 

give you this and you can notice that what you have here is the a 4 1 K 1, a 4 2 K 2, and 

a 4 3 K 3, which itself was a kind of a series of terms. And, if I keep in that series of 

terms only have to h cube because there is a h downstairs here. That would make this 

overall series on the right hand side as h 4, and that is what we need to do. 

(Refer Slide Time: 29:53) 

 

So, that is what we do. We do a little bit of algebra and this is what appears as the 

intermediate solution for this increment K 4. Having obtained these expressions for K 1, 



K 2, K 3, and K 4, you go back and plug it in that expression where we have written 

down u n plus 1 in terms of u n, and this increments K 1 to K 4. 

(Refer Slide Time: 30:58) 

 

Then, you would have obtained a series where we have retained terms up to h 4 and then 

what you do is you compare that series with the Taylor series expansion of u t at n plus 1 

and go on till h to the power 4; that is, your last line of that slide tells you, and equate 

term by term once you start doing that. Since you have access to this material, I am just 

not bothering you with all this derivation on the board. You can convince yourself; they 

are the ones that will appear. So, the lowest order term will tell you that this W 1 to W 4 

adds up to 1, and that is what you would except because we are talking about 

weightages. So, all the weights should add up to 1 and that is what you are seeing here.  

Look at order h square term; that will give you this. There is no problem there; however, 

if you look at order h cube term, you would once again see, there would be terms which 

are coefficients with f f u square, and there would be terms which are f square f u u terms 

multiplied to that. So, if we equate the Taylor series with this algorithm, and then equate 

the coefficient of these two sets of terms as we did before, then order h cube will 

generate two equations, and that is what we have written down. 62 and 63 are those 

terms corresponding to f f u square and f square f u u. You look at order h 4 and there 

you would have terms which are multipliers of f cube f triple u f square f u f triple u, and 



f f u cube. So, if we match these three sets of terms, that will give us three more 

equations. 

(Refer Slide Time: 32:56) 

 

So, what do we have now? We have from order h 1 equation, from order h square 1 

equation; order h cube, we have two equations; order h 4 - three equations. So, all 

together, we have seven equations. How many unknowns do we have? We have those 

four weightages W 1 to W 2, and then we have a 2 1, a 3 1, a 3 2, and a 4 1, a 4 2, a 4 3. 

So, there are ten unknowns now. So, that gives you some bit of room to maneuver. What 

you could do is, you could fix any three of them according to your convenience, and 

convenience means you would like to put some of them equal to 0; that would mean 

lesser number of computation. right If I set some coefficients equal to 0, that gives me 

the liberty of not evaluating those sets of terms. 

So, we look for such opportunities, but if you look at this equation, that should send you 

a warning bell by saying – look, be careful; do not try to put a 4 3, a 3 2, a 2 1 equal to 0; 

then you would be violating the condition that would not be; that is why, I have written it 

down that you should really not choose them as equal to 0. What we could instead do? 

We could pick up the other three: a, I, z, equal to 0 because that is what is involved in 

those increment functions. So, if I trace these three to 0, then we can decide to have some 

kind of advantage of computing less. And I wanted to bring one fact r to your attention 

that, I have looked at some textbooks, very old ones and good ones, Ralston, and there 



are some books by Indian authors too. Unfortunately, I could not reconcile to the fact 

that they talk about eight equations and what we are seeing here that we get seven 

equations. So, what happens is - working with 8 equations for 10 unknowns; they give 

you some kind of solutions. 

(Refer Slide Time: 35:44) 

 

So, we get these weightages as one sixth, one third; one third and one sixth, and 

accordingly some set of conditions are given. So, I asked one of my PG student from 

Maths to really see what is going on here, if we are making some mistake; the good news 

is, we are not making some mistake; apparently, those books are not reporting something 

consistent because as we can see, we cannot have more than seven equations, if I am 

going up to fourth order. 

So, we decided to check out their solutions. So, we will adopt all those weights that they 

have chosen, and then work out for the rest. This is what we get - that two of the 

equations gives a 3 2 either as 1 or one half; so, we decided to take one half because you 

do not want to go in an intermediate step, all the way to the terminal point so that 1 

would be a non-admissible solution. right So, that is what. We decided that we should 

take a 3 2 as half; if we do that, then we will get a 4 3 as 1, and from two sets of 

equations that we will get a 4 3 equal to 1, and if we take another sets, then we get two 

possibilities - 1 or 1 by root 2, and if I take another two equations, then I get a 4 3 equal 

to 1. 



So, all these tell you, somehow, that this 1 by root 2 is odd man here. So, that should not 

be a valid solution; instead, if we choose a 4 3 equal to 1, they seem to satisfy 61, 62, 63 

and 65; 64 is already satisfied. So, all you need to see if that equation 66 is satisfied most 

of the combinations that we get do not satisfy the last equation except this condition a 2 1 

is half a 3 2 is half and a 4 3 is one. This is a big relief because what happened is - this is 

exactly the solution reported in those books; I do not know; it is a bit of mystery at this 

point that they have done something inconsistent; they come to some such solutions and 

that solution seems to be quite ok. And even if you correct those mistakes, you still get a 

set of solutions which are the same. 

Well. This looks somewhat very inelegant. We have been looking at some kind of a 

solution which was obtained by someone. We are just checking this. The best thing 

would be to choose a method where we could minimize the next higher order truncation 

error term like what we talked about in R K 2 method. Just now, we looked at the 

truncation error term, order h cube term, and that we minimized, and that is how we 

fixed c 2. 

So, we should be able to do similar such exercise; looks like a bit of a work, and that 

kind of a possibility always tell you, with all apologies to P G students, that P G students 

have bit of a time to work those details out. So, I have given it to my young friend there 

to work it out. So, that is the way. 

So, you basically look at order h 5 term and minimize that truncation error term. So, 

what we are talking about? We are talking about fixing three quantities in that; exercise 

is arbitrary; then you have 7 equations. And try to look at the next higher order term in 

that three dimensional space and find out where the minimum is, and that is how you do 

it. So, this is all about Runge-Kutta methods. Let me assure you that Runge-Kutta 

methods are one of the most elegant, physically correct, efficient methods. So, that is 

why I would not ask you to look for anything beyond Runge-Kutta methods, for all your 

requirements of time advancement for sure, and we will come back to that topic again 

when we come to discussing PDEs.  



(Refer Slide Time: 40:05) 

 

Now, just for the sake of completeness, I will briefly touch upon multi-step methods. 

You ought to know because lots of work gets done using multi-step method; say, for 

example, a generic equation that derives a three time level method is written here in this 

equation 67. So, you have the solution advance time level in terms of what you have in 

the current time level plus what you have stored in the previous time level. 

So, that is how the three time level gets into the picture, and of course, in solving that 

equation d u d t equal to f. You need to evaluate those, and once again, we are talking 

here about autonomous system because that is what we get. Now, what you can do is you 

have to fix this coefficients alpha 1 alpha 2 beta 1 beta 2. So, what you do is, you write 

down the Taylor series expansion. 

So, you write u n plus 1 in terms of u n, and this of course, remains as it is. This, you also 

write in terms of u n. So, what you do is you write down the Taylor series of this; also, 

that we have seen, and equate term by term and you get this equation; alpha 1 becomes 1 

minus alpha 2 beta 1 works out like this and beta 3 works out like this. So, you can once 

again treat alpha 2 as a free parameter. So, if you choose alpha 2 equal to 1, you 

immediately see that alpha 1 becomes 0, and beta 2 becomes 0, and the method that you 

get is called a Leapfrog Method, and this is what all the weather prediction people have 

been doing ever since they started their business. They always use this Leapfrog Method. 



 I will come to discussing about this particular method that after having said that multi-

step methods have to be observed, but still it so happens that if you are solving in viscid 

equation, this method happens to be one of the most accurate methods, and that is for 

some good reason, atmospheric science people have been using for decades. Now, we 

will talk about it. 

So, this is one of the methods you see. The three level method works out fine because 

what happens here, you get two modes and both the modes becomes coincident, and that 

happens to be the physical mode. So, that is the beauty of this method. Unfortunately, 

though this works only if you are looking at in viscid equation, the moment you add 

diffusion terms, you would notice that this method will blob on your face. 

So, that is a major issue that you would not like to use a priori without knowing pros and 

cons of the method. It is a warning to you that appropriate analysis must be performed 

before adopting a method.  

This last one, I have purposely added. This is advanced by Adams and Bashforth; these 

were two, I suppose, scientists in Cambridge in 19th century and they were solving some 

problem of surface tension, and they worked it out that they could do it by hand and they 

did come out with this method. What it does is, it advances the solution in terms of the 

current solution and this right hand side here is evaluated at the current time level, and 

the information obtained at the previous time level. The bad news about this method is, it 

is the overly glorified; lots and lots of people use it; in fact, you go and use any search 

engine, you will find that, lots and lots of people are claiming that they are doing most 

accurate calculation using this Adams-Bashforth method, which we will see that it is not 

really a good thing to adopt. 

I purposely mention that Adams and Bashforth, when they developed, they were using 

their brain power to work it out by hand. So, they did not do many many time steps and 

that is why they did not probably realize the pitfall of the method which we did about 

few years ago, and we did report it in couple of papers and warn people, but looks like 

the warning has not registered. People still continue to use; so, this is something. 

So, having come to a bit of a discussion about ODEs and their solution method, I try to 

bring in a little bit of advanced topic and that is what is called as a stiff differential 

equation. However, that may not appear to be such an oddity for people coming from 



chemistry and chemical engineering. Stiff differential equations are those which are, of 

course, very stiff resistant. What happens is, if you try to integrate, then you would see 

that there are components of solutions which vary completely, differently.  
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So, if I talk about a set of equations, so what we have written here is a sort of a vector 

equation. u prime means u 1 prime u 2 prime; I have written it in a columnar fashion and 

the right hand sides are functions of time plus all those u’s. And what you have is, you 

are provided with a solution at the starting gate at t 0. 

So, what you are going to see is, this is a set of coupled equation and you could write u 

prime equal to some a u, and that a would come from this partial derivatives, what we 

call as a Jacobean. So, this nothing but del f del u 1 del f del u 2, and so on so forth. So, 

you can fill up a matrix and that matrix will have n Eigen values. right We have an order 

of the system m. So, we will have m Eigen values. 

What happens is, you can work out a ratio, which we will call as the stiffness ratio; that 

is nothing but the quotient of maximum for the real part of lambda i and minimum of the 

real part. So, that basically tells you that, in that system, something is going with this 

kind of rate with time. That is what it means right real part of time. So, we have generic 

solution and e to the power lambda t. right 



So, the maximum growth rate would correspond to this part growth or decay because we 

are talking about modulus. So, it could also be a decay rate also, and here, the 

complementary part which will be just on the other end of the spectrum, if you look at 

this ratio, if this ratio is too far apart, then you have all kinds of problem. 

Why because, your numerical requirement will be tied to these extremes. right It is 

almost like a poor man’s blanket; you know, you try to cover up this part, that part will 

be exposed, and vice versa. 

So, what happens is, you have to be really be conscious about it. As I mentioned about 

this example from chemistry, this could relate to say, simple chemical equation. So, you 

have a forward part of the reaction and the reverse reaction, and you know the forward 

part of course goes at a very high rate compared to the reverse reaction in most of the 

stable reactions, and that gives rise to a regular problem of stiffness issue, and that is 

what I thought I will explain to you. There was this equation that we have been looking 

at recently relates to stability of physical systems. This was proposed originally by 

Landau, some bit of work was done by Stuart, and later, Eckhaus contributed to it. 

Eckhaus’ contribution comes through this coupling term. So, suppose, let us say, we 

have a two degree of freedom system given by a 1 and a 2, and we are looking at its time 

rate, now what? You notice that this path, the first term, corresponds to the linear growth 

rate. Suppose I remove the second and third term on the right hand side, then what I get? 

d a 1 d t is alpha 1 a 1. So, I can immediately integrate and I can see a 1 goes as lambda 1 

t; same way, a 2 goes as lambda 2 t. 

Now, this term, the second set of term which was a bit of a mystery Landau suggested, 

but never shown the proof, and he did not completely tell us how he got it, but that 

seemed to work out very fine for some systems, and you would be surprised to see that 

people use it across many disciplines; not only for what he intended in fluid mechanics, 

but it has been used even in quantum mechanics. Landau-Ginzburg equations, people do 

use it is a variation of this equation. 
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So, this second term that you are seeing here, this one, this second term here and the 

third term here, that gives rise to what is called as a non-linear saturation because this 

one - the first term, the first term that we have seen, tells us a 1 goes as e to the power 

alpha 1 t. So, if I plot a 1, then from a present condition, it will perhaps start growing 

exponentially. That is what it means. If real part of alpha 1 is positive, that is what it 

does. This second term that we are seeing here, beta 1 1, that has this tendency to 

saturate that, and this is very often seen in physical system. So, that is a basically non-

linear saturation term. 

So, that gives you eventually an envelope which goes like this. So, you get a stable 

system description; in fact, those of you who have seen or attended any course of fluid 

mechanics, you may have seen that, if you keep a bluff body in a flow, you get this 

vortex shedding, which comes out in a nice manner. right You get alternate from the 

alternate side; you see that shedding, that is very well captured by this Stuart-Landau 

equation. 

However, for some situations, for some parameters, these do not work very well, and that 

provoked Eckhaus to add this coupling term which was done by one of our students 

recently. We did look at it and what we found that whenever you are looking at it, let us 

say you have predominantly a single degree of freedom system a 1, but somehow another 



mode also comes into play, which you cannot neglect for all time. So, then, you need to 

worry about this third term here and this second term here. 

However, now, what happens? You see, a 1 may go at a higher rate and a 2 contributes 

very little, but still, its presence has to be there. It is exactly like your forward and 

reverse reaction. You want to talk about the equilibrium; you will have to keep both; so, 

here is a similar scenario to maintain the equilibrium. You need to have these cross-

coupling terms, and what happens is this coupling is rather weak, and the moment this 

coupling becomes weak, you are looking at a large value of this stiffness ratio. 
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So, what? You find that, when you are looking at the dynamics of multi-model system is 

not dominated by single mode, or if you are looking at higher order differential 

equations, you would often face stiffness of differential equations, and this is not 

imaginary. This keeps happening. So, to illustrate it, we have chosen a couple of ODEs 

looks little odd in terms of these coefficients, but you solve it out; it looks like this. 

This is a synthetic problem. So, you can see, we have purposely concocted this solution 

to really work out two fundamental modes. One decays with time as e to the power 

minus 2000 t; the other one is much more gentler in its decay. Its e to the power minus 2 

t. So, one is decaying rapidly as compared to the other. 



So, you might as well say why should we even bother; this is anyway going to disappear 

in a short time. So, we do not really need to worry about e to the power minus 2000 t, but 

then, life is not always that simple; you will not guess the solution, if you knew you 

wouldn’t be doing, you would be given, handed down, a couple of coupled equation; you 

will have to be solving it and if you solve it, you would find that the time step 

requirement that comes out from the numerical instability point of view, which we will 

talk about later, puts a very restrictive condition on the amount of time increment that 

you can choose. So, for this equation, depending on this stiffness ratio, now, you can see 

this is about 1000 and the time step is restricted to 00014. 

So, even for such a simple looking linear equations, you would have to spend lot of 

effort. You cannot just simply say I will not worry about it. If you say that, you will see 

to your peril that solution process will break down. You decide to take anything larger 

than this. This value of delta t essentially tells you, that you are capturing this; without 

capturing that, you cannot go ahead. 

Now, mathematically speaking, this is about the coupling of the equation. We have two 

modes and when we compute, we also have what we call as the round-off error. You 

cannot compute without round-off error, and what happens is, round of error would 

always be there because your set of equations of both the modes, although this mode by 

itself does not say its importance, but when you are trying to obtain a numerical solution, 

you have to do the same thing that you do analytically also. You cannot just simply get a 

solution without both the modes being present. right 

So, what you need is, we need to keep solutions where all these modes remain, retain 

their linear independence. right If one part of the solution become dependent on the 

other, then you have numerical contamination. The solution breaks down and that is what 

this stability limit is telling us; that, if I do not take small steps, I would not be able to 

retain both the modes, and I will lose linear independence. So, what happens is the 

parasitic error which is given by this riding of the small sources of error, like round-off 

error rides, on what seems to be benign and does not affect the solution, but those errors 

ride on those un modeled path, and eventually solution blows up; that is what it says. 

So, classically, what is to happen is people used to use a method called trapezoidal 

method, to solve at least this class of problem given here. 
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So, if I talk about the system of two equations here, so, d y 1 d t equal to f 1 and d y 2 d t 

equal to f 2, then the trapezoidal method would involve evaluating this right hand side as 

weightage of the function evaluated at the current time level and the function evaluated 

next time.  

So, basically, this is how you go about, and if the equations are linear, it works fine, but 

if there are non-linearities, we will have to work little harder, and in some cases, even for 

linear equation, this does not work out. So, this is what we are going to talk about 

tomorrow’s class. 

 


