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We start lecture 39 with our discussion on Bubnov-Galerkin finite element method in
solving an elliptic equation with linear basis function, and when we go through this weak
formulation, the special derivative term appears like a C D 2 expansion, and this is a
erroneously been pointed out by various people. But we want to state unequivocally that
this Bubnov-Galerkin method provides a much better dispersion relation than the

equivalent FDM.

We also noticed that this Bubnov-Galerkin method has the energy conservation property
and, we can, as we mentioned that we can look at the 1-D convection equation and
workout the dispersion relation property of this. And as usual, we can take the FEM
method in the wave number plane and find out k equivalent by k for this, and find out

what is the spectral resolution achieved by this finite element method and what is the



added dissipation. We note that for the internal elements, Bubnov-Galerkin method is

non-dissipative.

However, near the boundary we will have to have one sided elements and that essentially
leads to the problem, exactly similar problems that we faced in the compact schemes;
and this has been variously attempted in various versions of Petrov-Galerkin method.
SUPG or stream line upwind Petrov-Galerkin method of Hughes and his colleagues fall

in this category.

One of the aspects of this SUPG method is in choosing the stream wise diffusion
parameter that is built-in into the method and this has been done following some classic
work for, once again, a 1-D convection equation. But unfortunately, this diffusion
parameter has been designed for a method for which one assumes that there is no error in

time discretization.

Using those values of stream wise diffusion parameter, we can obtain the real and
imaginary part of k equivalent by k of SUPG method and work out the numerical
amplification factor. We can notice that this is a very dissipative method and which will
not be able to solve 1-D convection equation at all.

So, that is why, we investigate the quadratic basis function based Galerkin method, look
at its boundary treatment and compare various results of the linear basis function based
FEM, the quadratic basis function FEM, and the SUPG method and with this will

conclude this lecture.
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So, let us begin.

Recall that in the last class we started looking at an example of this type; how we apply a
linear Galerkin type of a method is displayed here. So, what you write is u as a linear
combination of the basis functions, as given here and the nodal values.

And if you recall, in the weighted residual method we had to choose the weight function
which we called as w j; in Bubnov-Galerkin approach that w j is nothing but pi j itself.
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So, what then happens is then you substitute this into this, then multiply by the weight
and then integrate and this is what you get; this is what we were doing in the last class.

So, we are not satisfying the differential equation, as it is, we are satisfying its weighted
residual to be equal to zero, that is what is the weak form is. Now, what happens is we

also noted that this basis function pi of j that we have taken here, they are linear.
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If they are linear, then, of course, you will not be able to support a second derivative; that
is where integration by path comes to [Jlf rescue. You can spread this requirement on
second derivative by doing integration by parts and this is what you get. And the first
derivatives are obtained if you look at your basis functions like this, so one of which is
basically minus h and this is 1 over plus h and what this was the jth node, this is j plus
1th node, so this curve belongs to pi j, whereas this curve belongs to pi j plus 1; that is

the way we had done.
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And then..., So we substitute it in here and then we will see that this j goes from 1 to n,
but you will find the contribution will come from j is equal to | minus 1 | and | plus 1.
And using this derivative information as we have noted here, the derivatives are given
like this; so, this is essentially d pi j d x as this is the d pi j d x j plus 1, so that is what we
are doing.
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So, substituting that this part, this part comes down to u | minus 1 minus 2 u | plus u |
plus 1 by h and then we have this quantity pi. So, before closing yesterday | mentioned to
you that the second derivative, as it is here, this term contributes this term.



(Refer Slide Time: 07:01)

And you can see that if I divide it by h square, that is, something like your C D 2 kind of

representation for the second derivative.

So, quite often, the knack you will find in many books, they will say that it is a second
order accurate representation, which is misleading because you see although this looks
like a C D 2 stencil, but this is not simply f of I.

(Refer Slide Time: 07:39)

FEM- Example Application (cont.)

" » Note that the contribution to the Ihs of (34) comes from —l
J=1and;=1+1onlyand given by

t_1 *Qﬁr*‘lfrﬂ (36)
» This appears as (' D, discretization for 2/ derivative term
of (30).

#» However, the analogy ends there as the rhs of (34) is not 'f,
evaluated at the 1" node, which is evaluated as:

flr)=2, fi65 (37)
2 Using (37)in (34): [ exf(x) de =Y f; [ o0, do
_ fm+4({1+f!_1 h (38)

» Substituting (36) and (38) in (34), we get

wi_y —2utugsy o Jrei 4 it fioa
[ - )

{ (39)
7
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So, what you do actually to obtain this term? You also express f of x in terms of its

various Galerkin nodes, so those are those nodal values of f j times pi j you do. And then



you multiply by f of | and integrate overall possible j’s and once again you will see that it
is only that the Ith node and the neighbor on either side, | minus 1 and | plus 1 will

contribute and that contribution is given here.

So, in the end what you are getting is, this is the discrete equation that you have. So, if
you are doing finite difference type of calculation, let us say, with the second order
central scheme, then left hand side would be same, but on the [il@ili hand side you would

have gotten simply f of I.
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FEM- Example Application (cont.)

| » The forcing term in (39) (or the temporal discretization term
shown later) shows enhanced spectral accuracy in
comparison to other discretization methods.

» Having noted the differences with FDM, we note the
differences with spectral methods also.

# Firstly, the error in FEM at the /" node is not orthogonal to
basis fns. Thus, increasing the number of bases, N, alters
all the «,'s which isn't the case in spectral methods.

# Despite this FEM may be preferred due to the possibility of
using non-uniform spacing of elements.

» Another advantage of the Galerkin FEM wrt other methods
is i’s relatively better dispersion properties (DRP) & energy
conservation properties which is emphasized via a
space-time dependent problem.
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But, in this Bubnov-Galerkin approach, you are getting some kind of a weighted average
of f on the right hand side also. Well, this actually leads to enhanced spectral accuracy in
comparison to any other discretization method, and that we should be very easily be able

to see because the way we have developed our analysis tool, we can figure that all.

But we should also note some differences why we are getting this spectral accuracy,
although it is not exactly like spectral method? Because the error in FEM at the Ith node
is not really orthogonal to basis functions, that is what we have seen. What happens is
increasing the number of basis functions n alters all the u j’s, which is the case for
spectral method, but FEM, it is a kind of a local adjustment.



Despite this non orthogonality of the basis function with the residue, we do use FEM
because of its ease of coding and getting the solutions and because of its local nature of

the solution.

And what is important for us - to realize that if you are solving some problem of the kind
which we have been dealing in this course, kind of a disturbance propagation, then we
require dispersion relation preservation property, and we will be able to show shortly that
FEM actually give you a better DRP property than many other method, which is not

always appreciated.
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nergy conservation & DRP of Galerkin FE

| » Consider the space-time dependent problem:

StLwy=0a<z<h (40)
with L{u) representing the spatial dependence operator.

#» Following (31), we write
HU'_T}?SJ\:‘ taf\f](_';_F-,l'] (41)
Note that «,'s are given a time dependence unlike in (31).
Although this is a seemingly simple separation of variables
often used in solving PDEs, there are however far reaching
consequences of this.

#» The fn. o; is simply a space dependent fn. and is a local
representation of u(x.1).

# (41) should therefore be viewed as a multiscale expansion
with the small scale variation in space given by the bases.

I will just skip this part, it just tells you that this Galerkin FEM has this unique property
of preserving energy, it has been shown here by a representation of evaluation equation
of this kind; so, whatever may be the equation after special discretization, you may be
able to write it like this.
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nergy conservation & DRP of Galerkin FE

| » One gets V coupled ODEs for u;(t) and to establish
invariance of energy, multiply (40) by « giving

,":ﬁ {‘T‘) dr=— _!,j‘ ul(u) dr (43)

# For energy conseration over the full domain, the operator,
L, should satisy:

[ 6L(#) de =0 (44)

# As [ results after spatial discretization, it is possible to
choose uy carefully and in the Galerkin framework (44) is
equivalent to

1 () (5 ) =0

# This establishes the very important energy conservation
property of the Galerkin methods.

And if you are solving in a domain with x varying from a to b and you do this kind of,
FEM kind of expansion in terms of the nodal values of u j of t, now what it amounts to is

basically, if you multiply that equation by u, this is what you are going to get.

Now, if you integrate it over the whole domain, left hand side gives you a kind of an
estimate for the energy - half u square is the energy. So, if you can show that your u is
represented by some kind of a Galerkin expansion in such a way that the right hand side
is identically equal to 0, then you have performed the energy conservation; so, that is

essentially this.

So, basically after your spatial discretization, if any function theta could be written like
this, then you have achieved the energy conservation and this is what is actually done in
Galerkin method. So, that is why Galerkin method continues to be a method of choice for

the very accurate calculations.



(Refer Slide Time: 12:00)

DRP of Galerkin FEM

#» Here, the DRP of Galerkin FEM is discussed wrt to the 1D_
c_:onveqtion equation:

5+ r:—J =0a<z<b (45)
» Comparing with (40), L = ¢~ and (42) becomes

T G Jy o0 dn+e X u; [, ot de =0 (46)
# Firstterm on the L.h.s., from (38), is given as

b (4 o+ 22 )

# From Fig. 3(a), one notes that the non-zero contribution to
the second term in (46) can only materialize for j =1 &
({ £ 1), due to compact support of .

» FromFig. 3(a), u/ [ /% dv =% [ 467 d and simplifies

w [ .21z A1 Er+1
o bl k] .‘;—L T 9l }
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Now, | mention that, that we do get better dispersion relation preservation property of
this Galerkin FEM. So, let us get back to our 1-D convection equation and then we go
through this expansion of u like this, as we have indicated here and substitute it in the
governing equation and then integrate over the whole domain from a to b and let us say,
we have n such basis node, then the first term would give us this. So, you see, all time
derivatives would be built-in in this because this is strictly a function of x, whereas this is

a function of time.

So, basically, that del u del t, that partial would result in the ordinary derivative d d t of u
j here, and once again you multiply by pi I, that would come from this term; the first term

and the second term is written over here.
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Now, this term, we have already seen this is like what we have just now done. See this
term, we saw that this was nothing but one-sixth of f of | minus 1 plus 4 f of | and this is
f I plus 1. So, this, this term is exactly like this term; think of f is nothing but d u j d t and

then you basically get this term as this.
(Refer Slide Time: 12:00)

DRP of Galerkin FEM

" Here, the DRP of Galerkin FEM is discussed wrt to the 1ﬂ
convection equation:

Dt —ga<r<h (45)
# Comparing with (40), L = c- and (42) becomes

S S [ ey dr e XN [ o de =0 (46)
# Firstterm on the L.h.s., from (38), is given as

§(de 4 ot 1 20) )

# From Fig. 3(a), one notes that the non-zero contribution to
the second term in (46) can only materialize for j =1 &
(I + 1), due to compact support of o;.

i+ d

» FromFig. 3(a), u/ [ /% dv =% [ 467 d and simplifies

uy 21y i A2+
tO T [Oi. lrey T {)i, | }
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So, this is something that you notice that in solving that 1-D convection equation, the
time derivative is treated differently in FEM as compared to other methods because you



are now taking a weighted average of the time derivative from the Ith node and at | plus
minus 1th node; so, this is a kind of a difference that we should have.

Now, we can estimate this term slowly, say for example, we are integrating over all
possible j, so that contribution would come from j equal to | and | plus minus 1. For
example, if I take j is equal to I, then I will get this term as phi | d d x of phi | in this.

(Refer Slide Time: 14:47)

So, that is like u | by 2 d d x of phi | square d x and what do we get? We get this because
the Ith node is..., If this is my, say the Ith node, so then what we are getting this is the
function. So, this goes from | minus 1 to | plus 1; so that is what where we have the
footprint of the node, is from x | minus 1 to x | plus 1 and if we substitute it there, we
will see that there would be a total cancellation and there is no contribution coming from
l.
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DRP of Galerkin FEM (cont.)

# Note that oy(r = 1) = &y( = r2y) = 0 and ¢y(x) is T
continuous and thus there is no contribution from j = /.

# Contribution from j = (/ — 1) is calculated from

uy | %=L which evaluates to —“- (48)

# Finally, the contribution from j =17+ 1 is given by
W ‘j‘ojdj% dr = =5+ (49)
# Using (47)-(49) in (46), we get the following discrete eqn
duis duy | iy

%(T+4—,,rr =) sl —wq) =0 (30)

# Although the spatial derivative term appears like C'D- term,
the spatial resolution and dispersion properties of (50) are
superior even when Euler time discretization is employed in
(50). This aspect is investigated next.

- |
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So, that is why, we find that j equal to | does not contribute to for that integral by any
amount. Next, look at the interaction of the Ith node with the left node by taking j is
equal to | minus 1 and we can perform this integral because we know what this
derivative is. Suppose, we are looking at say the Ith node, so this Ith node is this and |

minus 1 is this.

(Refer Slide Time: 15:43)

So, this integral that we are performing, here | minus 1 interacting with Ith node, so this

is your | minus 1th node and this is your Ith node; so, the interaction would come only



from this region. So, that would be nothing but integrating from this will be x | minus 1
and this is x I; so, that is what we do.

And what is d phi | minus 1 d x? That is this slope, so this slope is what we know is

minus one over h.

(Refer Slide Time: 16:49)

So, I will just simply replace this 1 by minus 1 over h and [Jilill expression we have
written here and we will see that would be this part, phi | minus 1 would come from this
part; so, that would give you this quantity.

So, | have omitted those steps, but you can do it yourself, that would work out to u |
minus 1 by 2. By the same way, you can find out the contribution coming from | plus 1th
node; so, that would be this path.
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So, | am talking about interaction that will come from this, so this is the interaction
between | and | minus 1 and this 1 would be | and | plus 1, that is what we are going to
get and that would give us u | plus 1 by 2.

(Refer Slide Time: 15:16)

DRP of Galerkin FEM (cont.)

# Note that alr=x)—1)=¢(r= Typ) =0 and oy(xy) is T
continuous and thus there is no contribution from ; = /.

# Contribution from j = (/ — 1) is calculated from
ui-y o™t dr which evaluates to " (48)

# Finally, the contribution from j =17+ 1 is given by
ug [ o d'ﬁr“ dr = =5 (49)

# Using (47)-(49) in (46), we get the following discrete eqn

h [ duis dy iy

(% 4+ B + Sl — ) =0 (50)

# Although the spatial derivative term appears like C'D. term,
the spatial resolution and dispersion properties of (50) are
superior even when Euler time discretization is employed in
(50). This aspect is investigated next. J
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So, what really happens is, then your discrete equation for the convection equation
comes out like this. Once again you notice, that this is that familiar C D 2 kind of
representation of del u del x term, but look at the time derivative, it is a kind of a

weighted average of u | obtained from its two of neighbors as well.
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DRP of Galerkin FEM (cont.)

# Spatial resolution in (50) is estimated by expressing the

unknown by

ulzy.t) = [Uk.t)e™ dk (51)
# Substituting (51) in (50) we obtain

[ {Rie" 4 ¢ M 4 g™ e HNU} et dk = (52)
» The integrand yields, 2 + 6 ___c2ull;r_y (53)

(44+2cos(kh)) 2 h

# Note that the coefficient of 7. f) above, is nothing but £.,,.
Thus, for Galerkin FEM with linear basis function, the
spatial resolution is

k.. : sin(kh)
T = T F (54)

So, what happens is let us look fll how we can analyze it by representing this again in this
kind of a Fourier representation? Fourier Laplace representation at x I, 1 would just
simply put the phase at i k x | and t dependence kept in U and substitute it in the equation
that we have it here.

So, we are going to write these as the..., that in this form, and then wherever | have x |
plus 1, I will write itas i k x | plus i k h; so, those ones will contribute here. So, this first
term that you have seen, that contribution is coming from u I plus 1, the derivative, time
derivative; so, that is it that is equal to nothing but d u d t times c to the power i k h. And

the middle term is simply 4 d u | d t. So, that is what we are getting here.

And the, this term is [BlBOMISE, the u | minus 1 d t; that term will give you e to the power
minus i k h and whereas, the spatial derivative terms give you again u | plus 1 and u |
minus 1. So, they, those give you this e to the power i k h minus e to the power minus i k
h.

So, basically then rearrangement of this would lead you to this equation and what you
notice is then, that it is equivalent to as if you have evaluated the derivative at the Ith
node itself, which is given here, and the rest of the term, the product is nothing but what

it is your like i k equivalent, is not it?



So, what happens is, you are noticing that i k equivalent form FEM is not what you
would have gotten form C D 2. C D 2 would have given you simply sine k h by h, 2 sin k
h by h, but here because of this weighted averaging of this term, you get this additional

term in the front here 6 by 4 plus 2 cos k h.
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DRP of Galerkin FEM (cont.)

d —— F!
R |

1
=
(Kyo/K)ya

\
|/ \
S |
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ko : kh

Fig. 4(a) Speciral resolution of Galerkin Fig. 4(b) Added numerical dissipation-
FEM Galerkin FEM

So, basically then this quantity that we have here is nothing but our k equivalent by k.
So, what happens is, as a consequence you will find that in the interior nodes, that what
we have just now shown, we get k equivalent by k, the real part goes like this. And let
me just point it out to you, that this is far more accurate than your C D 2 representation.

If you would have taken a C D 2 representation, that would have started from 1 here, but
that k equivalent by k curve would have been part below this; whereas, you are
preserving that k equivalent by k very far into this k h range, it is more than about 1.3,
1.4 as compared t0 0.25t00.34 C D 2.

Whereas, of course, the imaginary part you will not get anything because it is a kind of a
central representation and you do not have that; only thing is you will have to do

something more for the nodes, which are at the end of the domain.
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Let us try to just explain it a bit. Suppose, this is my domain and this is my first element,
first and last element; we integrate it like this, the second element is, of course, like this.
So, the second element is a regular element with the two paths, but the first element only

has this path because what you want that in this range, you want that everywhere, this

plus this should add up to 1 and that is what you get by having this.

So, the same way for n minus 1th node also, you would get this kind of a representation
and this makes it somewhat of a one sided kind and that is what we are seeing here.

(Refer Slide Time: 20:22)

DRP of Galerkin FEM (cont.)

1259

.

—— =1 N

——— j=2-(N-1)

kh

Fig. 4(a) Spectral resolution of Galerkin

FEM.

k]

T 3

kh
Fig. 4(b) Added numerical dissipation-

Galerkin FEM.
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If we evaluate that differential equation for j equal to 1 or n with the stencil, the discrete
equation different and that would make this real path obtain a overshoot, whereas the

imaginary path is going to be of the following kind.

Now, for this wave equation, as we have seen, is going from left to right and because...,
So, basically your convection direction is this and for this, the first node, what you are
getting the information? You are getting it from inside and that leads to kind of a
numerical instability and that is what is indicated by this imaginary path taking a very
high value.

So, at the inflow you have instability problem for FEM kind of representation, whereas if
you look at the last node, it is just the opposite; so, these two are basically nothing but

mirror image of each other.

That is because of the central nature of the thing, but you understand that this is one of
the drawbacks of FEM, like even in compact scheme that if you are not careful in

handling the near boundaries or points correctly, we may get into physical instabilities.

(Refer Slide Time: 23:28)

DRP of Galerkin FEM (cont.)
| » The additional factor provides significant improvement in |
resolution of Galerkin FEM compared to ¢'D,-FDM.
#» Non-dissipative nature of the discretization is clearly seen
as one would expect in solving (45).
# The discretization is for | = 2to V' — 1 and one needs

separate treatment for the first and last elements as shown
below, with one-sided basis fn. still supporting the basic
properties of Lagrange interpolation.

First Last
Element Element,
+ X

Fig. 5 Shape functions shown for the whole domain.

However, what we could do is that is what | just now shown you, how you handle the
first and last element and then you can actually discretize, perform the discretization

from | equal to 2 to n minus 1, but you have to have a special treatment like this.
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DRP of Galerkin FEM (cont.)

# First element will be similar to last egn. of (32) while the
N element is given by the second egn. of (32).
Fori=1: ifodu | Q) 4 croy ) yy) =0 (55a)

dt

Forl=N: Lo | 1]y e(y ) =0 (55b)

# Two aspects evident from (55) are: firstly, the discretization
is one-sided- the information propagating from the interior
to the boundary at both the nodes, contrary to the physical
description provided by (45).

# Thus, the physics is violated, while aiding the directionality
at the last element.

For example, if | do that what | just now explained - for | equal to 1, this is the discrete
equation I would get and for | equal to n, | get this, and this is not a symmetric
representation. You can see, this is u | plus 1 minus u | and this is what | was saying that
information is propagating in the wrong direction because you are sitting at | equal to 1;
but the information is coming from | equal to 2 and which is a wrong attribute physically,
whereas for | equal to n, this is o.k. because you are going from inside the domain
towards the outside; so, that does not cause any problem. In fact, that causes extra

dissipation.

So, thus, we can conclude that the physics is somewhat violated while aiding the

directionality at the last element.
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DRP of Galerkin FEM (cont.)

# Secondly, due to the nature of the spatial discretization,
numerical dissipation/anti-diffusion is added at the
boundaries. Here, we note numerical instability for | = 1
and over-dissipative nature for / = \.

# Isthere a possibility to reduce the excessive dissipation?

# From (50), the dispersion relation is obtained, assuming, no
error committed in time discretization as

e ‘}'_ﬂ ;i;w ’.il.‘..'_.,. (56)

= h (24-eos(kh))

# For Euler time discretization performed in (50), we obtain
the numerical amplification factor as

G = 1 — 3iN i) (57)

C(D+cos(kh))

#» We will revisit these results for Galerkin FEM after obtaining
results for quadratic interpolation fns.
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DRP of Galerkin FEM (cont.)

# Spatial resolution in (50) is estimated by expressing the
unknown by
ulzy.t) = [Uk.t)e™ dk (51)
# Substituting (51) in (50) we obtain
[ {Rie" 4 ¢ M 4 g™ e HNU} et dk = (52)

» The integrand yields, 2 + 6 ___c2ull;r_y (53)

(44+2cos(kh)) 2

# Note that the coefficient of 7. f) above, is nothing but £.,,.
Thus, for Galerkin FEM with linear basis function, the
spatial resolution is

k.. : sin(kh)
T = T F (54)

Now, let us get back to this discussion of the dispersion property. We have noted, we
have noted here this is this, so even if |1 write d u d t is equal to something like your i
omega and then transform, so this equation would give you an expression for omega.
That is what we are saying here that the dispersion relation is obtained, let us say, by
assuming that the time integration is the exact. So, d u d t i will just simply write as i
omega you had. So, that means that omega is nothing but this factor; that is what we

obtained in that expression 50.



So, basically once you have the expression for omega, you can calculate the
corresponding group velocity by taking d omega d k, but that would be somewhat

artificial because we are taking the time discretization to be exact; that is how we get it.

However, what you could do is you could decide having obtained, let us say, discrete

equation of this kind, what we have written here 50.
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DRP of Galerkin FEM (cont.)

# Notethat oy(r =1 ) = oy(x =x1) =0 and oxy) is
continuous and thus there is no contribution from ; = /.

# Contribution from ; = (/ - 1) is calculated from

w1 [ o"2=" dr which evaluates to —“ (48)

# Finally, the contribution from j =1+ 1 is given by
gy 020y = 4t (49)

# Using (47)-(49) in (46), we get the following discrete eqn
:'-(‘-L"ﬁ'—th—'r-fdlr,-—)*jm“ —u_1)=0 (50)

» Although the spatial derivative term appears like C'D, term,
the spatial resolution and dispersion properties of (50) are
superior even when Euler time discretization is employed in
(50). This aspect is investigated next.
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DRP of Galerkin FEM (cont.)

#» Secondly, due to the nature of the spatial discretization,
numerical dissipation/anti-diffusion is added at the
boundaries. Here, we note numerical instability for / = 1
and over-dissipative nature for / = \.

# |s there a possibility to reduce the excessive dissipation?

#» From (50), the dispersion relation is obtained, assuming, no
error committed in time discretization as
w= 3 (56)

# For Euler time discretization performed in (50), we obtain

the numerical amplification factor as
[l 1 _ -'5.’,\', sin(kh) (57)

[2+cos(kh))

» We will revisit these results for Galerkin FEM after obtaining
results for quadratic interpolation fns.

Suppose, we perform a Euler time integration, so in each of this term | will write itas u |

plus 1 at n plus 1th time level minus u | plus 1 at nth time level and then apply that



Fourier-Laplace transform, then we will get this G ofl, G of 1. What, why did I put it as
superscript within bracket 1 is because this is a p equal to 1 polynomial we have taken;

we have taken a liner basis function.

So, we will call that as G of 1 and substitute it there and do this analysis the usual way

that we are familiar with; now, this G of 1 comes out like this.

So what does this G of 1 represent? You can very clearly see what modulus of this will
be greater than 1, so this is going to be numerically unstable; so, that is one of the issue
of Galerkin method.
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Petrov-Galerkin FEM

# The numerical instability for the solution of convection eq.
by Galerkin FEM has often been misinterpreted as due to
“under-diffusive” nature of the method.

# To cure the numerical instability suffered, upwinding is
suggested leading to the (S)treamwise-(U)pwind (P)etrov
(G)alerkin method.

# ltis claimed that the structure of the modified weight fns. is
far more important than the actual value of the parameter
and that additional terms should not be interpreted as
artificial diffusion.

# To assess these claims, we analyze the results of applying
SUPG method for (45).

So, this had created lot of problems for FEM development when you look at unsteady
problems. If you are doing, let us say, structures structural analysis where you are
looking at steady state, that is where Galerkin methods seems to have no problem
because there is no time dependence coming is...; the problem comes when you have

coupled space-time dependence.

And that is what prompted the early practitioners who wanted to use finite element
method in fluid dynamics scenario. They realized that you will have to develop a
methodology which will work when you have simultaneous space and time dependence

and this is where they gave up on Bubnov-Galerkin approach by not taking this.



So, what (( )) did was they switched over to Petrov-Galerkin method and in Petrov-
Galerkin method, what Jl@ll do is you do not use phi j equal to, oh sorry, w j equal to phi

J, you just give up that option.
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Petrov-Galerkin FEM (cont.)

# Here, the test fns. are not the basis fns. and for a typical
interior node the weight fn. is altered to have higher weight

upstream of the node than the downwind element.

# For (45), the discrete eqn is presented as:
h iy gy du 1y du ¢/ \
3 (14 5)—= + 451 + L] =3 j\‘—"— ?I_”;, L —W_1)=

i {
dt di dt

%-134;.1 — ) (58)
where, i is the sireamwise diffusion parameter evident
from the rhs term. We recover the Galerkin method by
setting 17 = (.

# =105 provides the discrete eqn for [ D, discretization of
spatial derivative.

#» Raymond and Garder suggested that a value of 5 = 0.26
reduces phase error, in solving wave problems on a
—— variable grid. —

So, anyway we will talk about this Petrov-Galerkin method a bit now. One of the most
used method is that SUPG, it is called stream wise upwind Petrov-Galerkin method. This
seems to be used by many, many people, let us (( )) what this is, I will just put some

results.

What do you . is basically you take weight functions, which is now not like your
Bubnov-Galerkin method. In the Bubnov Galerkin method we took w j as phi j, so if |
am looking at this, | have equal weightage coming from both the side because this

function is symmetric.

In Petrov-Galerkin method, what they instead say, that you actually look at the weight
function which should have higher weight upstream of the node than in the downstream.
So, if, let us say, the information is propagating in this way, then | would perhaps take a
function which will be SKEIMEE like this and which may be weighted more heavily on the

upwind side.



So, this is your Petrov-Galerkin kind of an approach and if you do some such thing,

which was done by, once again, by weather prediction people begin with; so, they found

out that there is another parameter that comes in, that actually gives this bias.

(Refer Slide Time: 30:11)

So, this is your Bubnov-Galerkin method and this is your Petrov-Galerkin method; so,

these two are Petrov-Galerkin method and this is the Bubnov-Galerkin method and this

biasing in Petrov-Galerkin method comes through this factor, parameter called beta,

which is called the stream-wise diffusion parameter.
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Petrov-Galerkin FEM (cont.)

Here, the test fns. are not the basis fns. and for a typical T
interior node the weight fn. is altered to have higher weight
upstream of the node than the downwind element.

For (45), the discrete eqn is presented as:

% (1 +§)’!—‘:;ﬁ+ %ﬂ:—'—‘ (1- %ii’l’,@,— + 5 —ug) =
':Tf(lirrl — 2+ ) (58)
where, i is the sireamwise diffusion parameter evident
from the rhs term. We recover the Galerkin method by
setting 7 = (.

4 = 0.5 provides the discrete eqn for ', discretization of
spatial derivative.

Raymond and Garder suggested that a value of 7 = (.26
reduces phase error, in solving wave problems on a _I
variable grid.
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Now, | am not going to go through this, it is a quite elaborate area. There are thick

volumes speaking about this method itself.

So, we would not go about it, but what happens is we get almost a similar thing like what
we had obtained for Bubnov-Galerkin when it comes to ¢ times del u del x term; that is
exactly there. But you also get this additional term, it is proportional to beta - the stream

wise diffusion parameter.

What you find, this is nothing but your second derivative. So, in the name of up winding
in this Petrov-Galerkin method through this parameter, beta is equivalent to actually

adding dissipation to the background; that is very evident from this term.

This is nothing but your second derivative of u with respect to x that comes out and the
time derivative has the same structure as before, except that you have 1 plus beta by 2
and here you have 1 minus beta by 2, but still you get the weighting similar.

So, what you find that if you substitute beta equal to 0 in this equation, you get back to
your Galerkin method. We also can check it out that if we put beta equal to half, then

that would be like what we had done for finite difference first order up-winding case.

That is, that is, what we are referring to here that the first order up-winding via finite

difference gives us something like u | plus 1 u | by h.

So, that is, that would be written equivalent to u | plus 1 minus u | minus 1 by 2 and then
you will have to add this part up, and when you put beta equal to half, you will see that
will exactly map.

So, you can see that beta gives you an additional degree of freedom to actually use
Petrov-Galerkin method. And these two gentlemen from weather prediction side, they
did some analysis on wave propagation problem and they suggested that you choose beta
equal to 0.26 and you get pretty good results.
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Petrov-Galerkin FEM (cont.)

# One obtains the eq. wavenumber ratio as
sin(kh)—i3(1—cos(kh)) ] (59)

4]
(442 cos(kh)—idsin(kh)) kR

keq
&

—_— =
———— j=2-(N-1)
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Fig. 6(a) Spectral resolution of SUPG Fig. 6(b) Added numerical dissipation-
| FEM. SUPG FEM

i Wi (FEM) . 355

We will see such results shortly, but before we do that we can find out that this Petrov-
Galerkin method that we are talking about, gives us a k equivalent by k given by this

function.

Previously, what you saw that this function was purely real, but because now we have
resorted to up-winding, you will see it will become a complex gquantity and that is what

you are seeing, sign k h minus i beta times 1 minus cos t.

Similarly, here also there is imaginary part involved and what does that do is that if you
plot the real and imaginary part, the real part looks exactly like what we have gotten in

Bubnov-Galerkin method; there is absolutely no difference.

So, this figure is exactly like what you would have gotten with the Bubnov-Galerkin
method. What differs now is the imaginary part. Because of up-winding, what you would
find that you would get a negative value of k equivalent by k and that is what you are
seeing in this black line, this is for the interior nodes; you find that the significant amount

of numerical dissipation is added.

And please do understand this value of k equivalent by k imaginary. Even at the Nyquist
limit you can see this value is something like about 0.3 or they are about, and if you
compare with what we had done in compact scheme, this is hugely dissipated scheme;

this is very, very dissipated scheme.
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Petrov-Galerkin FEM (cont.)

# [tis not difficult to note that the real part of ’T for SUPG
method is identical to that shown for Galerkin FEM with
linear basis fns.

# Note that (59) is for an interior node only and the presence
of an imaginary part indicates the diffusive nature of the
SUPG method.

# For Euler time integration, the numerical amplification factor
obtained is G = G,..; + iGipay (60)

y anr [ Al—cos(kh))(2+cos{kh))—sin® (k) |
S real =1 — 68N, |2 il
( real 1 3N, [ H24-cos(kh))2+72 sin*(kh | (61)

. < AT +2cos(kh)) s h)+23%(1—cos(kh)) s i)
(’-rw-f = —6N, { | kh)) sinfkh (1 (kh)) sin(kh (62)

1(2+cos(kh) 2+ 5% sin®(kh)
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So, what happens is that should remind you that when we were talking about error
propagation equation, I compared all four methods; | compared a C D 2 method with a
compact scheme, then this SUPG method, and that method that is used in fluent, that
quick. And what we found, of course, that the fluent and SUPG actually removed the

signal and that was the reason.

Because of this if you look at the G path, you will find that depending on beta, G real
itself will bring down the value from your ideal value of work; so if beta equal to 0, then
you would not have gotten the second part.

So, here in SUPG that attenuation comes through this path where u deviate severely from
its ideal value of 1 via the second term and of course, you have this imaginary part as
well. And having obtained the real and imaginary part, we can calculate that beta, if you
recall; and from beta we can calculate the ¢ n, the numerical phase speed and from there

we can calculate the group velocity.
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Further Notes on SUPG Method

" » Asconsidered by Brooks & Hughes, consider the 1D
advection diffusion eqgn.

Qe f (63)
ot ar ’

where 7 is the total flux shown as the sum of cu- an
advective flux and — 19 diffusive flux.

# In(63), [ is a source term and # is diffusivity.

# The discontinuous weighting fn. used in SUPG formulation
IS @) = wj +pj (64)
where w; is a continuous weighting fn. and p; is the
discontinuous streamline upwind contribution.

# [n the interior, both contributions are assumed to be
smooth.

#» Brooks & Hughes developed the method where p; weights
. are considered only at the interior not affecting the -
continuity conditions. Pk o St ok e et Vb (M) 750

And doing all these analysis, Raymond and Garder did talk about a, did talk about a

better wave propagation property for beta equal to 0.26.

I am again going to skip this, you can read it leisurely. This is little more explanation of
SUPG as given by Professor Brooks and sorry, Professor Hughes and his student Brook
and it is, it is basically trying to sanctify the usage of up-winding by claiming that you

are adding some kind of a cancer stress term; a stress term.

(Refer Slide Time: 36:29)

Further Notes on SUPG Method (cont.)

| » Also the method was originally developed for rectangular

elements. These factors ensure that p; does not affect
diffusion terms.

#» For elements that are not strictly rectangular, the
contribution |, p; (—k%5%) dV" is assumed as small.

# Itis noted that this SUPG method (Brooks & Hughes) is not
applicable for higher order elements.

# Interesting aspect is alteration of scalar diffusivity to an
artificial diffusivity tensor (J;;) for multidimensional
problems by ki; = ke, (65)

where, =¢;/ | ¢ || and | ¢ [-= ¢

2
# Here, ¢, and ¢; are advection velocity components for
skewed propagation of information w.r.t. cartesian system.
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»

Let us omit that part where we will not talk about that. However, let us come back to the
dispersion that we were [J@Mll, namely that what is now called as the hp element

method, which depends on simultaneous refinement of the mesh, that is, reducing h and

Higher order bases for Galerkin FEM

In recent years optimal methods called hp (h- mesh size,
p-polynomial degree) FEM methods have been developed.
Comparison b/w continuous piecewise polynomial
(CGFEM) and it's discontinuous counterpart has also been
studied.

We reinvestigate the properties of Galerkin FEM for wave
problems using quadratic basis functions.

Replacement of the linear bases with quadratic polynomials
increases the stencil size of the discrete eqn.

Here, we investigate the alteration of dispersion and
numerical stability properties in solving the wave eqn.

Also, the Gibb’s phenomenon is probed here. We call this
method as G2FE .

increase in the order of the polynomial p.

So, if we look at this, the first candidate would be, what we have done is trying to take
the basis function in terms of a quadratic polynomial and this we will be calling as G 2

FEM. So, this is the second order polynomial - the Galerkin expansion second order

polynomial finite element method.
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Soln. of 1D wave equation by G2FEM

# Here, we have 3 quadratic fns. for each element given byT
the local representation (29) and shown in Fig. 2.

# The global representation is shown in Fig. 3(b) and is
analytically represented below.

(r+hy)(x +%L] ‘(IJ{;’?] (1= %Im <r<(l- %ll‘?|
ofr)=S —4{r + )@ B0 (1 —hy < < (I +g)hy (T0)

(2= hi){x - %1 [(R3/2) (1+ ki <z<il +f_—3)h\
# The discrete eqn involving the overlapping elements are
shown in Fig. 7, for a central element /.

# For spatial derivative term, use h =/, /2 in (70) and
substitute in (46) to obtain 3~ 1; [} 0,22 gy (71),

Fourattons of Soarti Canyuling Finis ke Mshards {FEN) - p 4251
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So, this we have already seen the basis functions look like this. So, we have those three
sets of functions, if | do that again, so this is my point; so, the, this is one node, so this is

let us say the Ith node and | will have a midpoint.

So, this is my | plus 1th node and this is the midpoint and this is my | minus 1; so, what
happens is Ith node is defined into 3 parts - one is this part, that is given by this middle
equation here, this is this path that I just now drew and the other path would come from



here, this will be like this and here we will have the third part which will come like this,
that would be like this.

So, basically, that the top function is the left one, the middle one is this parabolic curve
that we see here symmetric and this is that [illlj hand element; so, this is what you get

from the quadratic polynomial used in this.

Now, what we are going to do is we again look at the wave equation that is our perennial

test bed. We will use that and note that we have added a midpoint as the additional node.
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Soln. of 1D wave equation by G2F' E M (cont.)

Fig. 7 1D lagrange quadratic elements and their interpolation functions. Shown are the participating
| _five elements for discretizing differential equation for the ' node.
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So, that is what we do that we define a h which will be nothing but h | by 2 and then we
go through this exercise and this exercise is not trivial, but this is a figure that would

actually explain to you how you evaluate the terms.

So, let us say, | am trying to evaluate the terms for the Ith node, so these are my basis
functions, this is the middle path, this is the left path and this is the right path. Now, we
will have to see, which are the nodes that are going to interact with it to produce

nontrivial contribution?

For example, for phi I, I will have contribution coming from | minus 1 and that is what it
is. So, I will have a function which is a parabolic function, which is there and plus the
BBl clement, that is there. It will also [{@ll contribution coming from f of | minus 2, that



would come from this path only, the right hand path; the other part is, of course, here and

they do not have common interface with the Ith node.

The same way, if you look at the contribution coming from the right hand neighbors, you
will find that contribution will come from | plus 1 and | plus 2, and this is the way that
we will have to find out that there are actually seven Lagrange quadratic elements. And
this is the way the functions look like and you would be seeing that if you are looking at

the Ith node, the contribution is going to come from | minus 2 to | plus 2.
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Soln. of 1D wave equation by G2F E M (cont.)

_.n The contribution comes from the 5 elements located
symmetrically around node / and is given by

)

-3h ;
Z H.L‘ / rq% ”’.;‘ =
S J-3h N
w—oly + w1 I+ uils + wy Iy + upnls (72)
Where, 1[ = [S’:’, Uf%:‘;_ﬂ 1?}' = %
Similarly, we obtain I, = -3, I; =0, [, =4 and I; = - 1.
# Thus,
2 -3h :
Z Ups s / w{”t}# da = rl;_’“—'_’ — 8uy_q + Stgq — upea) (73)
S ] '

j==2

So, this is like your C D 4 kind of an expansion, so that is what (()), you go through all
those. And | have given you the detailed step; please check it that you will find the
contribution that would come from the convection term would be like this - U I plus j, we
are multiplying by phi I, then we will find out that the contribution would come from |
plus j, where j will go from minus 2 to plus 2; and integral non-zero contribution would

come from minus 3 h 23 plus 3 h.

That is, that is the only thing that we are going to have a non-zero contribution coming
from, rest of it everywhere else, it will be zero. And once you work it out, you have the

expression for those phi | of, or phi j’s, then you can calculate the derivatives.



Now, the derivatives are no more like constant in the linear basis function. So, it would
need little bit of calculations, go through it and then you will find that u | minus 2 will be

multiplied by this integral 1 1, evaluate that integral and you will get 1 6.

Then you will get contribution coming from u I minus 1, the multiplying integral works
out to equal to minus four-third and you will find that Ith node on itself will not have
anything because it is a symmetric function; symmetric function means you will never

have the contribution coming from the central node itself.

So, that is why | 3 should come out to be equal to 0 and | 4 will be plus four-third and
that also comforting because you will see that if you are taking a symmetric function,

then it would have a anti-symmetric contribution coming.

So, if I 2 is minus four-third, 1 4 will be plus four-third, and if 1 1 is plus 1 6 1 5 will be
minus 1 6. So, basically then you will find out that this will give you this and once again
now you can clearly identify, this is like your C D 4 expansion of del u del x infinite

difference method; that is what you get.
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Soln. of 1D wave equation by G2F E M (cont.)

" » The time derivative term in (46) is similarly expanded as
N 3k
3 ] ;6 6. do (74)
—3h

j=1

# Again, the contribution comes from the element / along with
two elements on either side of it and is shown below.

dup_g p—h [ﬂm,; —h {uy —h 9
= T‘.,--Z'h‘; o200 H'I' | e P i 3l a1y {J’.,. T % ‘,.—:U; (.",' ff‘r

lith
iy ph B Ph iyl
7;'_‘}"* l Fi.- o/ IRY0]] dz + %.,‘,);, (Ji:, dr + J’_J,?'l J”JJ.‘ Ol dr

iz ﬁ;]:: J;I.”I 04101 dr + IE'—H—' .j;_”’ N+a0; dx
dug 77 | dups duysa

oty g e ca g (75)
» Weobtain/j= &, fj= % =20 7= 4 p— L

Now, like what we have seen with linear basis function, the time derivative terms will be
much more complicated here because of the quadratic nature of the function, the

weighting will come from these and you can see, once again this term will be getting its



contribution from the nodes at | minus 2, | minus 1, | and similarly you have this kind of

representation finally.

And we can go through this exercise and we will find out I 1 prime is minus h by 15, | 2
prime is minus 4 h by 15. I will actually send you a sort of a link of a paper where all
these things are worked it out; have been worked out [SHNSIEaIE ago where you can see.
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Soln. of 1D wave equation by G2F' E M (cont.)

# The time derivative term contributes to (75) as

h dw_s dug_ aqdup o gduisy dhiyya
Tl + 4= + 245 4 — S (76)
» Thus, the FEM discretization for the interior nodes | = 3 to
(N—-2)is
duy_» duy_ o g du duy, i s B -
(-~ + —l—[H Lo 247’ T 2 T~ i) T ap(—a — 8wy +
8ty — Uppa) =10 (77)

» For the near-boundary points, the basis fn. shown in Fig. 7
will not be useful. We show the alternate arrangement in
Fig. 8 that satisfies the interpolation properties of Lagrange
fns.

# The basis fn. for { = 1 is given by
L 0<r<h
o{r)= ,"_' ) (78)
- L op— h<z<3h —

So, what happens is, for the central node the time derivative actually works out like this.

It may look little complex, but that is what it is. So, your discrete equation is this taking

().

Now, what you can do is you will have to also do something more for the near boundary
points. Near boundary points are a little trickier because you will have to mix first and
second order elements, otherwise you will not be able to close it and we have shown you
here, say, for example, if we are trying to see how we are going to handle the near

boundary points; phi 3 is a regular point because that goes all the way up to 3 by 2 node.
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Soln. of 1D wave equation by G2F E M (cont.)

» Fori=2:

L\\:, S E— P
i 3 3 H
%
//\ o
i 3 3 H H 5
Yy
i 2 3 N H 1]

Fig. 8 The basis functions shown for the near boundary points.

# Note the x-coordinate is in local system- indicated above.
. For ease of understanding, o;(x) is also shown. |

So, this middle segment would be symmetric that goes from 2.5 to 3.5 node, and this left

node goes from 1.5 to 2.5, the right node goes from 3.5 to 4.5.

Now, if | try to extrapolate it on to phi 2, then what will happen? Well, | cannot have a
quadratic function here, | cannot have, because that will spill out from outside; so, we

cannot do that. So, what we instead do is we take a mixed element here.

So, this part comes from the quadratic side and this is the linear part. And similarly, this
phi 1 will take the right hand side element coming from quadratic element, whereas this
middle part is replaced by half of the linear element.

Why did you do that? Because we have to satisfy that Lagrange property, that it should

all add up to 1 and that you can see is done very, very adequately.
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Soln. of 1D wave equation by G2F' E M (cont.)

# With this arrangement, the discrete eqns corresponding to
(46) are obtained as:
=1:( |,5%1_[;%;_-1@ )

+ 2 (—6uy+Tua—uz) =0 (80)
737}] —Tup+8ug—uy)=0 (81)
# Similarly, one can obtain egns. for { = N and V - 1 nodes.

# For the interior element:

L B 5(4—cos(kh)) sin(kh)
& = T12+tcos(kh)—cos(2kh))  kh (82)

- 5iN_(4—co in(kh)
Goj =1 — o (83)

—9-(9dis | sduz  gdug  oduy
(=2: (9% +0 +8 It

#» Numerical phase speed is cy,; = E (85)

Numerical group velocity given by 1, ; = + !‘.'f%;".'

So, this is the way that you will have to do. So, for | equal to 2 we can write similarly
this kind of thing that is what we have shown. And you will have to go through that
exercise and it is a little bit of algebra, you go through it and you find out | equal to 1 -
this is the discrete equation, | equal to 2 - this is the equation and having obtained the

discrete equation, we can write out k equivalent by k.

By using that Fourier Laplace transform, we will get that and then substitute it and let us
say we do Euler time integration, we will get this G, the numerical amplification factor
like this. Once again you can very clearly see, it is an unstable method because the mod

G is going to be greater than 1.

However, having obtained the, the G, here you have the real part and the imaginary part.
You can calculate the numerical phase speed by this expression, what is beta 2 j? Beta 2 j
is tan inverse of G imaginary by G real; that is what you are going to see. Since G real is
1, so this itself is going to define your beta 2 j and you can calculate the numerical group

velocity.
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Soln. of 1D wave equation by G2F EA (cont.)
» For the linear basis fn. case replace »; with '
i =tan~! () (87)

# Similar expressions can be obtained for SUPG method
using the numerical amplification factor expressions in
(60-62)

# Expression for “?‘ for G1FEM can be obtained from (56)
for the interior nodes.

# This along with the expression for G2FE M show that they
are purely real for interior elements.

# For SUPG method, (59) shows that for interior elements
this is complex quantity as the corresponding discrete eqn.
(58) is asymmetric.

Well, that is what | wrote that for beta 1 j we had this expression, so we will replace the
corresponding expansion from here, this part could be replaced by, this part will be

replaced by that expression.
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Soln. of 1D wave equation by G2F' E M (cont.)
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Fig. 9 Real and imaginary parts of L— compared for SUPG and Bubnov-Galerkin method using
linear and quadratic basis fns

We have now basically the tool, all the elements that we needed to have; we can compare
various methods and that is what you are seeing here. It is not a very good reproduction,
a copy from a paper, and you can notice that k equivalent by k for the real part, various

methods go like this, all of the Galerkin methods are crusted together.



What is important for us to realize though, that the difference between G 1 and G 2, the
linear and quadratic elements, they are not greatly [HilfiGleM. they are closed to each other
and G 1 and G 2 are basically mutual methods.

So, in the interior nodes the imaginary part is 0, but only the near boundary points you
get this. And for j equal to 1 you can (( )), for G 2 FEM you get a very, very larger
instability because of the quadratic nature, whereas the second point, the instability
comes down, but still it is in the larger range of k. Whereas SUPG, as | explained to you
earlier also, gives rise to a massive dissipation; that is what you see here at the minus

value.
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And these are the contours that (()) did it very recently, last week only. So, we plotted
all this G contours - this is for linear basis function, this for the quadratic basis function,
and this is for SUPG.

This, this results are absolutely new and what you notice is that there is a very small

region where you get close to 1, but nonetheless both this methods are unstable.

So, what | have shown here is 1.30 is, that does not mean it is neutral, stable; if there is a
fourth decimal point involved there and if you want to go to 6 decimal and a 8 decimal,

though that point will eventually shrink to the origin itself.



So, these two methods, essentially going from p equal to 1 to p equal to 2, does not give
you much benefit. It is only the maximum value you will see, the instability will be
stronger; here the maximum is 34, there its maximum is 47, for it is, it is just that. But
anything above 1 is bad enough; it does not matter whether you have 34 or 47.

So, both these methods are unstable, that we know. This is your SUPG method, it is
interesting for one to note that you are actually not allowed to take a very large value of
n ¢ because this is also unstable — 1.004, this is 1.05 and so on, so forth and it is also
unstable. It is only stable in this vertical strip, but you also notice that it is not neutrally

stable because of that imaginary part of k equivalent by k; this line is 0.999.

So, even if you are looking at small values of N C, the solutions are going to be

attenuated and that we have seen before.
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Now, we can compute the C N by C for these three methods, these two once again are
almost same, so | do not see any difference between the two. It is the method that is
significantly different is that C N by C contours and you can see there is a small range of

k h, small range of k h and small values of N C where you can get C N equal to C.
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So that (()) so you can realize the utility of SUPG also. And this is what we need to
really understand, this is the group velocity features and once again you do not see
anything between linear and quadratic version of Bubnov-Galerkin method. It is the
SUPG method which you would be interested and you can see that is equal to 1, is a very
small strip and anywhere above, you are going to get the energy - numerical energy,

propagating faster.

What you also see is this region, this shaded brown region. This is the region where
actually you get that upstream propagating waves, the g waves that is marked here.

So, you can realize that even if you take a very small value of N C, you may end up with
a region of k h for which your wave can propagate wrongly, but then this is not an issue,

why? Because this, you will have to couple it with your G contours.

So, if I look at the G contours here, these are the areas where you would see massive
attenuation. So, this is the 0.5 line, so you will not get in actual computation ever,
upstream propagating waves. But there is this possibility if you excite the flow forcibly
in that region with a large amplitude disturbance, then you may actually get this spurious
propagation.



I think, this is the, all that | wanted to tell about this. So, what you realize that despite
what people have hope, the in hp element that defining h, of course helps, but not to a

sort of a linear estimate.
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For example, so if I look at it this way that if | keep refining h, I will, for example, can
get in to a range which has to be really very, very local, close to the origin to have a

usable element.

So, what happens is SUPG continues to be the choice for so called engineering
calculation. We do not consider it to be of use although there are lots of practitioners

within this campus itself, but they are of no scientific relevance.

What happens if the Galerkin method..., We have this issue of numerical instability
itself; given all those things taken together, | do not think finite element method is still a
strong candidate for scientific calculations, whereas if we go to finite volume method, we
may be able to recover the situation in a much better way. Finite difference method, as it

stands, still happens to be the best method of choice.

If you are trying to calculate some problem, solve some problems with good accuracy,
high fidelity, we still would cast our vote for finite difference method and that is why |

purposely spent most of the semester talking about this high accuracy finite difference.



So, this is all that | really wanted to tell you, finite element method, this is not something
what you would find in the books on FEM because they do not talk about waves, but |
suppose there would be some monographs on weather prediction that people may talk
about it.

But here also this picture very clearly reveals that this Petrov-Galerkin versions are a still
long way off from giving us the kind of accuracy that we require. So, this is something I
just wanted to show you that whatever we (()) for the disturbance propagation problem,
that was the constant theme that we had in this course.

So, we started off with defining how waves are central to any computations and then we
have focused upon these essential properties, and that why are these three properties are

essential, that we saw from that error propagation equation.

That was one of the key features of also this course. We wanted to show that what
Neiman assumed that signal and error to be governed by the same dynamics is wrong;
we found out that error propagates differently. It is more like a post excitation problem
and those forcing comes through this modulus G term; that is what we see and we have
seen that if modulus G is not equal to 1, whether it is greater than 1, of course that

solution blows up, so you do not have to worry about; you have lost it, so you know that.

The problem comes when you actually have G less than 1, you get some solution which

looks plausible are essentially wrong.



