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On this third lecture of our meeting today, we are going to discuss what constitutes 

physically a boundary layer and we will talk about the various methods that have been 

used in studying this area. One of it is due to Wentzel-Kramer-Brillouin and Jeffrys 

method which is again applicable only for linear systems. 

So, leaving that aside we will basically talk about similarity transformation, that will 

allow us to take the PDE directly to an ordinary differential equation and to solve this 

ordinary differential equation we will require auxiliary conditions; the auxiliary 

conditions consists of the initial and boundary condition. Having talked about this, we 

will briefly discuss how we actually use spatial discretization method in solving this 

ordinary differential equation. 



We also touchup on the time discretization and show how it is different from space 

discretization, because of the requirement of causality, which is distinct from the concept 

of upwinding that can be used in spatial discretization. When it comes to this solution of 

ODEs, we classify the solution methods in terms of whether we take one-step at  

a time or we take multiple steps and in doing so we actually numerically introduce what 

is called the amplification factors. 

And having set the goal here, we try to distinguish between multi step and single step 

method: while single step method only gives rise to physical modes, multi step methods 

have this additional problem of having spurious modes. We will be talking about that. 

Having described the requirement of a single step method, we will talk about solution 

methods for initial value problems and in this particular activity, we distinguish between 

explicit and implicit methods. In resolving this flow or the problems, we talk about 

truncation errors, the orders of method which defines these methods and as a follow up 

we will specifically focus our attention on Euler method to describe what it is; that will 

be followed by two stage or multi stage two step Runge Kutta methods. 
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We did talk about boundary layers, right. I think one of you after the class came and 

asked me that look I have not done any fluid mechanics, is that going to be an 



impediment? My answer to you would be not at all; there are various ways of learning 

subjects. 

What I prefer is associative learning. If you have an anchor on a particular subject, you 

have understanding on some topic, what I wish you to also probably look at the positive 

aspect of that way. Suppose, I know something then based on that knowledge I go to 

something which I can build upon. 

So, that is why I started with two problems: one was from mechanics and one was from 

fluid mechanics to give you a glimpse of what boundary layer does. 

 (Refer Slide Time: 04:14) 

 

If you want to have a sort of an impersonal mathematical way of stating the same thing, I 

would say boundary layer is a study of differential equations for say, some variable y of 

x where the highest derivative is multiplied by a small parameter; that in a sense we 

noted that a thin layer of pumps in the solutions space. Suppose, if I am plotting say y on 

this axis and x on this axis like the way we saw the velocity profile. What we found was 

that we have a thin layer over which you see a rapid growth and a good computing would 

require you to be able to resolve such rapid variations. So, this is one of the issues that 

come about in talking about boundary layers. 

As I told you that it got started in the early part of 20th century by the group at 

Gottingen, but people have been also looking at associated problems notably from the 



point of view of the same issue where a differential equation that has derivative term is 

always multiplied by small parameter. 
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So, in one case you can get boundary layer’s theory. There is the other method which has 

been looked up for a long time which is now known by this name Wentzel-Kramers-

Brillouin. Some people also add Jeffrey’s name to it; it is called WKBJ method. 

This also comes under the same class of problem where the differential equation has this 

kind of attribute. 

The only difference here between these two cases is that in this case delta goes to 0. I call 

this the thickness of the boundary layer delta goes to 0 as epsilon goes to 0 where as in 

WKBJ method delta remains finite as epsilon goes to 0. This is the first difference 

between these two methods; both are global analysis methods. 
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The second difference of course, is the very relevant one that this only works for linear 

equations. You can study linear equations. Well, but here boundary layer theory is little 

more versatile; it can also tackle non-linear problems. In fact, you noted that the 

boundary layer equation that we solved was a non-linear PDE and we could tackle it with 

quite ease. 

Despite that, you may note that WKBJ method gets a little more sort of exposure in the 

literature because those three physicists used it for studying quantum mechanical 

systems. 

So, I do not wish to [or sadly] with equations originating from Schrodinger equation and 

talk about boundary layers and WKBJ method. That is why, that was the reason that I 

took up something which engineers can visualize a boundary layer growing in a fluid 

flow or you could see that you have early transient problem in that mechanics problem, 

the spring mass system we saw that to be able to resolve those early transient you have to 

be better equipped. 
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Let us get back to where we stopped. We saw that we could tackle a non-linear problem 

and we saw this particular attribute that as the parameter nu, kinematic viscosity in that 

problem played the role of epsilon. So, if nu becomes smaller and smaller or what some 

of you would know that corresponding non dimensional parameter called the Reynolds 

numbers goes higher and higher; you get to see this boundary layer shrinking - the 

thickness shrinking. 



We saw that based on that observation, Prandlt and his group including Blasius, they 

exploited the nature of the solution and Blasius went one step ahead and introduced 

similarity transformation. Similarity transformation as I pointed out to you is a very 

versatile technique for converting PDEs into ODEs. (Refer Slide Time: 10:16) That is 

where we had landed up with this equation 16. So, that was the converted boundary layer 

equation in terms of that non dimensional stream function f. 
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psi was written down like nu U infinity x f of eta and this is your governing equation that 

you had obtained. f d 2 f by d eta square plus 2 times the third derivative of f with respect 

to eta that is equal to 0. 

We started talking about auxiliary conditions. Auxiliary conditions refer to both initial 

conditions. Well, it could be a single condition or could be multiple and then you could 

have boundary conditions. The appellation really tells you that initial condition relates to 

time variation. We talk about a problem; what are the conditions at t equal to 0. That is 

why we relate it to the initial conditions. 

However, you could also use with equal felicity, if you have the ability to solve the 

initial value problems using multiple initial conditions. For example, this equation that 

we are noticing here has the order very clearly visible here. It is a third order equation; 



so, we will require three conditions and those are the ones we are calling as auxiliary 

conditions. 
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If the stream function is given by psi here then of course, we need to know what we are 

studying. If you recall that we were looking at this problem. We have a simple geometry 

sharp leading edge flat plate exposed to a uniform flow which is indicated like this and 

that forms the boundary layer like this at a [later stations]. If this is U infinity, on the 

outside you have U infinity and on the surface you have no slip condition 0 velocity. 

That is what you are noticing that u and v are the velocity components given here. and 

these velocity components If I call this axis as y or eta and this as the x, the similarity 

solution allows us to do away with the x and y variation separately. Instead we look at it 

in terms of eta and what we notice that y equal to 0 essentially corresponds to eta equal 

to 0 and at y equal to 0, we require velocity to be 0. This in turn will tell you that if u is 

0, the first derivative of f that should be equal to 0. What about the other condition? If v 

is 0 of course, you can see that f also has to be equal to 0. 

So, this is the usual easier way to visualize that two conditions are fixed here. 

Unfortunately, you cannot have more conditions at this point. If we would have been 

able to generate all the three conditions here then we would have obtained what we call 

as an initial value problem. 
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You can now distinguish how ODEs are viewed in terms of initial value problem. We 

will call them as IVP and we have complementary to it what we will call as boundary 

value problem. In essence, I just now told you that this Blasius’s equation that we have 

written here will not be classified as IVP because you do not have the all the three 

conditions available at one of the end of the domain. 

(Refer Slide Time: 15:35) 

 

So, the domain that we will have to be looking at as I told you the shear layer forms like 

this. What we do is this delta, the boundary layer thickness that we talk about has been 



stretched out by the eta coordinate. That was the whole thing that we telescope it to a 

larger distance. Then what happens is we have two conditions here; we do not have any 

idea of any other condition that we could generate from this. 

However, we also note one of the properties is that the solution actually smoothly blends 

to the outer velocity. 

So, u starts of from 0. We do not know what is inside it; that is what we are trying to 

obtain, but we surely know that it smoothly blends into the outside velocity. That is what 

we say here that the third requisite boundary conditions for solving the Blasius equation 

is readily obtained from the observation that the boundary layer smoothly merges with 

the outer flow. 

Recall, we talked about inner and the outer variation - inner solution and outer solution. 

The boundary layer is the inner part and anything that is outside of course, we call it the 

outer flow. That could be obtained by some other equation by other means which we will 

not talk about in this course. 



(Refer Slide Time: 17:06) Since we noted also the u velocity was obtained as this at the 

edge of shear layer. So, we need to fix it arbitrarily at some large value of eta, the edge 

of shear layer while we may actually solve this equation not necessarily at the edge of 

the shear layer delta, but may be 3 delta 5 delta 10 delta. That is what we would be 

doing. We will be solving this equation over a larger value of delta and that edge of the 

solution domain we are calling as eta infinity. 
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From here you can see that at eta equal to eta infinity, we have u is equal to u infinity and 

that gives you this condition – d f by d eta equal to 1 as shown in the slide. So, basically 

this here is the third condition. Here is an example of a boundary value problem - two 

conditions given at eta equal to 0 and one condition given at eta equal to eta infinity. 
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This kind of through an example demonstrates the distinction between the initial value 

problem and the boundary value problem stated like this: that all the auxiliary conditions 

are given at one end then we have initial value problem; if the conditions are distributed 

between the two boundaries then we have a boundary value problem. All time dependent 

problems are inherently initial value problems because we have to give some initial 

conditions for time dependence. 

(Refer Slide Time: 18:50) 

 



Now having obtained an equation like this, next thing of interest would be for us to be 

able to solve this equation. To be able to solve a differential equation, we have to be able 

to replace these derivatives by some simpler information of the dependent variable and 

one of the easiest ways to do is use Taylor series expansion. 

Say for example, what we are showing here is if we have the knowledge of the function 

at y equal to x and its derivatives then of course, we can obtain a solution at a 

neighbouring point which is h apart. If it is in the plus direction then of course, we have a 

simple look of it like this and if it is on the other side, we will get the odd derivatives 

with a minus sign; this is quite straight forward. 

You all realize that computer does not allow you to directly use these differential or 

integral operators. So, we will have to do something and that is what we do - discretize 

the problem. Instead of having the problem in terms of the derivative we convert it in 

terms of functions at different nodes and that is where Taylor series expansion comes 

into picture. 

(Refer Slide Time: 20:29) 

 

What we have shown here for a point at plus h or minus h, we can do it at points which 

are at different distance from the point of interest. Basically, what we are talking about is 

if we are looking at y, this is x and let us say this is our domain of interest. We discretize 

the domain into a network of points like this and then if I am calling this point as x then 



this could be say x plus h. We are talking about uniform spacing, let us say and this 

could be x minus h and we can similarly get information at x minus 2 h, x plus 2 h 

etcetera. 

(Refer Slide Time: 21:08) 

 

Then with the help of those series representation, we can write the first derivative simply 

like this. I am sure most of you are familiar with it I am just giving a quick recap of the 

same. 

The first derivative could be written in terms of the function at x and its right neighbour 

or the function with its left neighbour or we could write it like this. We could write it in 

terms of the right neighbour and left neighbour divided by twice the gap between these 

two successive points. Now of course, you can visualize there would be many ways of 

evaluating derivatives - even these first derivatives. 

They would be far too many. How do you choose? Of course, we need to come out with 

some kind of rational, some kind of a guideline as to how to choose that. One thing you 

can clearly see in either of these relations if you look up here, I have gotten this first 

derivative relation by truncating the series beyond this term, second derivative onwards 

and then of course, pulling this on this side and dividing this by h, I got the expression 

for dy by dx. This tells you that the Taylor series has been truncated at the first order 

itself. So, this is called a first order method. 



Same thing if I pull this to the right and get this h dy by dx to the left and then of course, 

ignore these set of terms I get the other expression that also happens to be a first order 

accurately. (Refer Slide Time: 22:51) Whereas, this expression that you are seeing here 

taken from these neighbours on either side I subtract the second from the first then of 

course, y x cancels out and I get 2 h dy by dx. 

Then you also notice one interesting thing happens that these even derivatives all cancel 

out. In the process, what you get is this expression in which you have been able to raise 

your order of approximation from first to second order. So, it is quite obvious that if you 

get a higher order representation, you have a higher accuracy; this is a legitimate 

expectation. 
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So, that could be one of the rational that let me also tell you people have overplayed this 

obsession with order. We will see that there are better ways of characterizing various 

operations and we will learn as we go along. 

That was about spatial derivative discretization. When we have time derivatives then we 

have to think afresh. The reason is here – causality. Well, this is something which we all 

accept at the back of our mind; we assume it to be valid. As I keep telling whenever I get 

an opportunity that this is more of a philosophic view point than a mathematical 

statement. 



Nobody has proven causality, but nobody has seen it violated too. There you have it. It 

basically tells you that if you are trying to look at events at t at advance level which we 

did by index n plus 1 from the knowledge of the system, from the values that we have up 

to t n that would be legitimate, but we should not be hoping that somehow future can 

influence present that only happens in Hollywood films anyway, but this is a rock solid 

statement we have never seen it to be violated. 

Basically, we need to be aware of this and let me also tell you that for spatial 

discretization we have seen that if I am marching from left to right then I could take a 

point forward to the right. Fine, that is some kind of an analogy of going beyond than 

where we are now. So, that is routinely done for spatial discretization, but for time 

discretization you are not allowed to. 

However, what you could do is you could write down the expression for the variable 

associated with the events at t equal to n plus 1th level to be dependent on what 

happened in the past at the nth level, n minus 1th level, n minus second level and so on 

and so forth. 

What happens then that is a very interesting aspect and this is often been overlooked and 

this is one of the issue that we are going to talk about in greater detail in future. 

(Refer Slide Time: 26:28) 

 



Say, give a simple example, if I have a simple equation like this with a first order time 

derivative written here. What we could do is we could approximate this first derivative in 

the left end side by its approximation at n plus 1th level. As I have told you I could do it 

in the simplest possible way would be to relate it to the events that had occurred at just 

the immediate predecessor time. 

If I do that then I could define an amplification factor which I call it say g of x because I 

could be looking at a space time dependent problem. This u could be simultaneously a 

function of space and time. I could evaluate it at some point. We will not worry about 

this. What we will do is we will say that g of t I will write it like t of n, I will write as u n 

plus 1 by u n. So, how much the function has gained over one time step; that is the 

measure of this amplification factor. 

Now, you can very clearly see that this equation if I look at it and divide the equation by 

u of n then what I am getting, u n plus 1 by u n that will be g and 1 by delta t will be L of 

u n by u n. So, what I find that for a first order equation like this du dt equal to L u, g 

happens to be 1 plus delta t by u of n L of u n, that is what I get. 

(Refer Slide Time: 29:13) 

 

Now, for a moment think of if we would have done it slightly differently. We do not do 

this; instead, let us do it like this - u n plus 1 minus u n minus 1 by 2 delta t. Remember 

the central difference formula that we just now saw for the spatial operator. We can do 



the same thing and this does not violate causality because we are drawing information 

from n minus 1 and we are going from n to n plus 1. So, this is legitimate; there is not 

any problem. 

Now what happens? If I go through the same exercise, divide this equation on both side 

by u of n then what am I going to get? Help me. What I am going to get is u n plus 1 by u 

n will be g. So, I will get g then I have u n minus 1 by u n that is 1 upon g. So, what 

happens?  

Yes, tell me. 

Sir, the two will not would not be the same gs. 

Why not? 

One is a t n and one is t n minus one 

Depends on how the L u n is. You will see in most of the cases if you are not seeing what 

we. We will come to that - distinguish system which are called autonomous which are 

non autonomous. If you are looking at autonomous system, it will not matter. 

We will go in much greater detail. This is just an introductory stage. So, please bear with 

me. Consider that all gs are same; these are called stationary processes where events are 

same at all time step. They are called stationary processes and you will be seeing in most 

of the mathematical physics problem you will come across stationary processes. 

It is very rarely you talk about non stationary processes. I might even actually give you 

an assignment since you provoked me. We will find out that even for a stationary system, 

careless handling of that system numerically can actually get you to what you are 

dreading. It will happen and it does happen. 

So, what we are essentially getting here is a kind of a quadratic equation. I will just 

simply write this. What it actually means that here I just simply add g of 1; only one 

amplification factor, here I am going to get 1 and 2. I could write it down. I am not 

bothered about this for a moment. 



(Refer Slide Time: 32:06) This is what we have noted here that trying to relate events 

with multiple time steps not necessarily at one time step, but more than two levels are 

involved. See in this case of course, on the right hand side we have introduced only two 

time step; here we are talking about three time steps method. These go on from n minus 

1 to n plus 1 and as a consequence instead of getting 1 g, we are getting 2. Now, which is 

correct? 

Should we have 1 or should we have 2? Suppose, I would have gone on; instead of three 

time levels if I would have incorporated four time levels I would have a cubic for g now. 

So, I would end up with 3 values of g.  

Yes. 

Sir, I could not see that we are deliberate discretization in terms of time, sir because u n 

minus 1 and u n plus 1 are the discretization in terms of the space. 

No, it is not space; it is time. We are talking about time; that is a time derivative du dt. 

So, I have not written; for a moment forgot about space. Let us say this is a node e and 

time is the independent variable and n is the time index. I posed a question to you that 

more than two time level method gives rise to multiple values of g and this seems to be 

somewhat dependent upon what is the number of levels that we invoke. 

So, can someone tell me I mean what is the correct thing? I have already written it down; 

you have read it. All that I am saying is that this two time level method is the correct one, 

the real one. Why? It is because whatever you are doing your differential equations are 

limit processes - delta t going to 0. So, you should involve as a kind of a local or 

instantaneous representation of the derivative. 

More defused your information is, you start involving more time step from farther and 

farther backward. That is the artifice of your numerical method; that cannot be physics. 

That is why this one, g 1, I will call it as the physical mode. Here I may have one 

physical mode, we will see we will go much deeper into it as we go along and in this 

case mode will be basically numerical mode and no doubt about it that this is spurious. 



So, please be attentive to whenever you are doing temporal discretization that when you 

involve more than two time levels, those methods are called multi step methods. They 

come with the baggage of generating spurious modes. If you are not careful, these 

spurious modes can play havoc. In fact, the subject of chaos dynamics is probably built 

around, fooling around wrong numerical method. 

In many of the cases, you will see that if you are not careful about chaotic dynamical 

system and if you do discretization mindlessly then you might see totally a different 

dynamics than what you would like to see. 
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Whereas, whenever you use only two time level methods, we will call them as single 

step methods. Let us keep this in mind and then we will go along. Let us get to a very 

simple task of solving initial value problems. 

The initial value problem is of course, given by du dt is equal to some forcing term f 

which could be a function of t as well as the dependent variable. Now, this we would 

require. This is a first order in time equation; so, we require an initial condition. That is 

the whole idea. That initial value problem, the first derivative tells you that you need 

only one condition and that is provided to you. 
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Well, this method that we are talking about you can also use it for spatial initial value 

problems. There is not much to worry about as I told you that multi step methods are 

dangerous. We will keep away for the time being. We will focus simply on single step 

methods; they help you in avoiding trouble. 

So, if I am trying to solve that equation du dt equal to f. This is the generic equation by 

which we will be solving it. u at n plus one is equal to the predecessor at u of n plus h, h 

is the time step. Time is a function. This function we will have to work upon. That 

function will depend on the time levels which are involved here for the single step 

method. They are t n and t n plus 1, the function at the n plus 1th level, the function at 

the predecessor level and the time step level itself. 

This phi or variable phi - var phi, what you call this? It is called the increment function. 

So, all numerical methods revolves around figuring out this increment function and we 

can see that this single step method which has a generic appearance as given here can be 

further sub divided into two. 

If the right hand side is independent of u n plus 1 that means we have a what we call as a 

explicit method because you can explicitly calculate the right hand side and then you can 

march from u n to u n plus 1. 



(Refer Slide Time: 39:26) 

 

In contrast, if the right hand side is also a function of u n plus 1 then you have to worry 

about solving an implicit coupled equation that involves both the left and right hand side. 

What happens is explicit methods are simple to execute computationally; implicit 

methods are difficult. Why should we bargain for difficulty? The reason is the explicit 

method comes with severe restrictions whereas, implicit method allows you to 

circumvent these restrictions. 

For example, one of the restrictions for explicit method is the time step h; you have to 

take it very small. We will see whereas, implicit method would allows you to take much 

larger time step and when we are talking much larger means we are talking about order 

of magnitude improvement. So, that is the kind of payback that you can have that should 

give you enough incentive to really probe into implicit methods. 

However, let us keep our attention focused to explicit time integration methods because 

we are also going to show as we go along that while numerical restrictions are released 

for implicit method, when it comes to the genuine accuracy of the solution explicit 

methods are better. 

So, you pay for it by large number of time steps, but you get better quality result. That is 

why I would tell you about explicit method first, later on we will go to implicit method. 



(Refer Slide Time: 40:40) 

 

So, this is the way that we write numerically. If I represent the exact value with time 

indicated inside the bracket with indices like t n and t n plus 1, this is representation of 

the exact value of u. 

What we have written is that we could evaluate that at t n plus 1 in terms of t n and then 

with this increment function and of course, we have in the process left some terms 

behind which we will be calling as the truncation error. 

So, truncation error is nothing, but pulling this first term on the left hand side, that is u t 

n. What happens is we talked about order of the method when we were talking about 

spatial derivative. We saw first order method; we saw second order method. So, generic 

expression for the order of the method is you look at the truncation error term. For this 

first derivative, you divide it by 1 upon h and then you will see what is the order of the 

polynomial that you are getting - the terms that you have left behind. 

If that is the leading term h to the power p then I will call that method as pth order 

method. This is what we do. 



(Refer Slide Time: 42:06) 

 

Now, we wrote the numerical equivalent and in terms of Taylor series this is the story. u 

of t n plus 1 written in terms u of t n plus h u prime at k. Everything is evaluated at t n 

and this is the Taylor series. We are stopping at the pth time. So, it is a pth order method. 

Anything that is left behind, we can use mean value theorem and club it all in the p plus 

1th order time. Please note the argument. This is somewhere in between t n and t n plus 

1. That is what that theta is doing; theta is restricting you to remain in between the 

current time and the next time level t n plus 1. 

If I now compare with the previous page then I can simply see for a pth order method, 

this increment function is given in terms of this set of terms. It is almost like a Taylor 

series, but note that u of t n is missing. Anything beyond that, u of t n comes under that 

increment function term. 



(Refer Slide Time: 43:23) 

 

So, we have now an estimate for writing the exact solution at n plus 1th level in terms of 

the value at nth time level and increment function and plus the truncation error term. The 

truncation error term is readily identified by this. 

When I say I have a pth order term, the leading truncation error term will be p plus 1th 

term; that is h to the power. See this is where the order actually fools us because we are 

simply obsessed with the order of h, but who gives you a guarantee about this derivative 

of the dependent variable. See this is the p plus 1th derivative of u. 

There is no way we could guarantee that successive derivatives are going to become 

smaller and smaller. In fact in many physical systems you will see that it just happens the 

other way. I don’t know about Quite a few of you must have taken this other course on 

numerical methods in the second year level. 

There you must have come across a topic called interpolation and you must have also 

been told that you are trying to interpolate a function. It is always better to restrict 

yourself to a lower order than to higher order. Am I making sense? No, then we will 

come back to it in future. 

Well, you have a noisy data and you are trying to fit it with some polynomial. It is 

always better to stay as low an ordered system as possible because any small difference 



between the physical state and the measurement actually amplifies more, if you try to fit 

it with the higher order polynomial. 

Because This error if it is localized, actually excites the higher wave number or higher 

frequency and that is the reason that you should be well advised to not only pay attention 

to what this order of h is, but what the associated derivative is. 

In fact, we will figure out a method; we have developed a theory over here over the last 

5-6 years. We look at in the case space, the wave number circular frequency space. We 

will talk about it as we go along and then that would all make sense. We will come back 

to it again and again. 

(Refer Slide Time: 46:04) 

 

Let us look at few single step methods. The easiest one is in fact, what I have written it 

out here p equal to 1 and then what you get u at t n plus 1. I am just simply relating with 

u of t n and the right hand side function has been evaluated here like this. 

So, that is what we call as Euler method. Of course, suggested by Euler and you would 

note that Euler method looks easy, but very nasty method. Many times it will lead to 

numerical problems and you practically will be advised to stay away from it, if you are 

just simply looking at solving ordinary differential equation. 



So, what happens? You can raise the order of your method. You notice that here we 

needed the first derivative in Euler method. If I want to go to higher order method, say 

second order method then I will recall u double prime and since u prime is f, I could 

differentiate it and I could get u double prime which is f of t plus f into f u. If I want to 

go to a third order method, I will have to do a little extra work and if I want to go fourth 

order method, I will have to be looking at more details. 

So, this is what you have to do at the coding level. You will have to be evaluating them 

and you will have to be plugging them in, write your code and you have high order 

methods. 
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Now, there could be a practical method to fix the order of the method. If I look at the 

truncation error term and I say, look I am stopping at the pth order and I do not wish to 

cross this threshold, the error tolerance epsilon then what happens? This is your leading 

truncation error term that should be bounded by epsilon. 

If I do, I have to estimate this quantity within this modular sign - mod sign. What 

happens? After all, I do not know what this theta is; so, it becomes a difficult task. 

Instead, what you would be doing? You would be looking at the right hand side function, 

its pth derivative and you find out in that range from t n to t n plus 1. What is the 



maximum of that function? Well easily said than done, but you would be happy to note 

that solving ODE is quite common place, quite routine. 

So, if you go to [CCE] and look at any of You may have already used it. Say, go to any 

of these packaged routines available - libraries they would all have that and they would 

without asking you, do this exercise for yourself, but we are not talking about how to use 

packages; we try to find out why the packages work the way they are designed. 

I make an observation here that Euler method is a restrictive method all though not 

completely prohibitive. Will again spend some time talking about what exactly you mean 

by it. Every sentence is loaded; it would come with lot of explanation as we go along. 

We will be talking about it when we come to space time dependent problem later. 
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Now, we noted our restriction that we would not like to go beyond single step method, 

but then we find that the rudimentary method - the Euler method, is difficult to handle. 

Higher order methods have the disadvantage that you will have to evaluate all these 

partial derivatives not only in terms of coding difficulty, but computing time also will 

increase because you will have to be evaluating all those derivatives - high derivative 

terms, numerically and they would involve lot of extra work. 



What happens is these two mathematicians Runge and Kutta developed simultaneously 

what is called as single step method, but within that single step you break the domain 

further into smaller stages. 

That is why the word multi stage comes in here. So, we are talking about single step, but 

within that single step we will be stopping by at various stations and different stages. 

This was a very brilliant way of conceiving how we can address this issue of accuracy 

and not bringing in spurious modes. You can see that right. We are still keeping 

ourselves routed to single step method, but by adopting multi staging we should be able 

to improve the accuracy; that is the whole idea about this method. 

If I am trying to evaluate this equation advanced by one time step, this is what we do 

applying mean value theorem we write the expression like this. 

This f, I need to know at some intermediate state which I identify with theta. There are 

various possibilities of choosing the value of theta. After having chosen the value of 

theta, I could also evaluate this quantity f by multiple options and that is where you have 

the whole basket of different methods. 

So, it is not that you would be talking about a unique method here. You would have all 

kinds of freedom to look around and shop around. 
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For example, we have already seen that if we choose theta equal to 0 that is your Euler 

method. Basically, what we have done. Let us try to look at the solution and try to see 

what we are aiming actually. 
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Let us say I am plotting here u versus t and I have a solution at t n and I am trying to go t 

n plus 1 and this is say the exact solution. What we did if you can see here this increment 

function that we have evaluated is nothing but, the slope of the curve, is not it? Where 

have we evaluated the slope? At the starting gate. At this point if I draw a slope, Euler 

method basically gives me the solution here and that is where we have so much of 

problem, so much of error if the function is rapidly wearing and the slope is not truly 

representative of what the function is doing. In the single time step, you will always end 

up with a distant point from the exact solution and that is one of the issues. 

Now, Euler also came out with this method that instead of calculating the slope at t n, 

you calculate the slope at t n plus 1. What happens? I could draw a slope here. I will start 

from here; so, what I am doing is I am drawing a parallel to this line which is the 

basically the tangent here. What I am going to get is something like this. 

So, this line is parallel to this. Well, my drawing is not at all good, but I should be 

mindful of that and let us say we do that. That is your solution. So, if this is your basic 



Euler method, backward Euler method would get you there, but this just happens to be 

the way we have drawn the variation. 

In another case, this may not be as good as what it has been seen here. So, you can see 

that these two possibilities are not really at all that good that you also notice that the right 

hand side involves t n plus 1. That means, you will have to know the solution to evaluate 

the slope. If the function descriptor is tough then you will have a tough implicit method 

at hand because u n plus 1 is involved on both sides. 
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So, the other possibility is suppose [a query] we fix the mid stage at half way. I choose 

theta equal to half then you evaluate at t n plus 1 and it would be obtained like this. Now, 

you notice that this is not a node and we could again have the possibility of choosing our 

self. 

For example, for this we can look at the followings of subcase. If this is evaluated by the 

Euler method, that means what I am saying is I have to work out what this u at t n plus h 

by 2 is. What I would do? I will evaluate it as u of t n plus h by 2 into f evaluated at t n. 

Then what happens is wherever I have this function, I will write down as u of t n plus h 

by 2 f of t n. 



In an algorithmic sense, what I would do? I would first evaluate K 1; K 1 is nothing, but 

h times f evaluated at t n. Then having obtained K 1, I will evaluate the right hand side 

with the help of the knowledge that the mid station, the solution is obtained as u of t n 

plus h by 2 K 1. Once I have the K 2 evaluated in this fashion, I will just simply add that 

K 2 to the previous time level to get the new solution. 

So, this is a very simple demonstration of how a multi stage method works, if we decide 

to clean our information from midpoint of the stage. 
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Now, we could also do various other things. For example, I could have suggested that 

look this quantity that we have, we could wherever we need to have obtained this 

average, we will just take it as a half of what we have at t n and what we have [at the end 

of the…] 

Basically, then this will be written in terms of f of t n plus this and eventually plug that 

information in there and there you have it. Then we will be evaluating K 1 in this case 

again the same way, but K 2 has been evaluated in this fashion and the difference comes 

from the previous method is the final step here. I just simply take the average of K 1 and 

K 2. 



In the previous case, I just simply obtained it in terms of K 2 remember u of t n plus K 2, 

but in this case what you are doing you are taking an average of K 1 and K 2. That is a 

method attributed to Euler and Cauchy. So, call that as Euler-Cauchy method. 

Yes. 

(( )) what is the (( )) second order equation 

Yes. so I have Starting point was a first order method we are trying to get it better. So, 

second order method is a better method than first order method; that is the whole 

approach. 
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Let us try to recap what we just now looked at. If we have to evaluate then we have to 

see the suitability, applicability of the method from many possibilities. A natural way of 

course, would be to develop some analysis tools with the help of some standard 

benchmark problems. 

That really mimics the most physical processes involved in the differential equation. We 

hope to we will of course, we will address this issues as we go along. 

Let us now look at solution methods as given by Runge and Kutta and that is where we 

will begin from next Monday. 



Thank you. 


