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We begin lecture 30 with a brief review of what we have talked in the last class, namely, 

the sixth order scheme of Lele that was obtained by Taylor series analysis. However, we 

also pointed out that there must be some basis for choosing compact scheme. One way of 

doing it was an optimization of the scheme by looking at the truncation error; as we 

talked about in the last class about Haras and Ta’asans method of looking at it in the k 

space instead of worrying about the physical plane matching term by term. 

(Refer Slide Time: 00:20) 

 

In the process, we can develop very accurate schemes but, whose order could be very 

less. That naturally brings us to this discussion on the distinction between orders of 

approximation versus resolution of the scheme. We will surely highlight what is more 

important is the resolution of the scheme rather than formal order of approximation. 



In the process, we also figured out why compact schemes are so accurate as compared to 

other methods because of its global nature. That global nature can be found out very 

clearly by an analysis that we have developed - spectral analysis tool. We can figure out 

that this implicit method when written as an equivalent explicit scheme that is equivalent 

to 20th or higher order accurate scheme. So, this is one of the plus points of compact 

schemes as a global approximation. 

We have further developed the spectral analysis tool by finding out the resolution at any 

node for a non-periodic problem in terms of a projection operator that is what we are 

going to talk about. Once, we do that taking the derivative is equivalent to converting the 

k, a wave number into an equivalent k which we have called as k eq, which will have a 

real and imaginary part. The real part actually represents the phase while the imaginary 

part represents dissipation or anti-diffusion. 

This is rather important, because we will just show using one of the older schemes due to 

Adams - near the boundary; this scheme actually shows very large dissipation near the 

outflow and instability near the inflow. Then, we will also talk about carpenter scheme of 

fourth order accuracy. We noticed that this method also has a problem with the boundary 

closure; this is essentially due to the asymmetry of all compact schemes. 

So, we have to be extremely careful in how we get this boundary stencil in the compact 

scheme. This has led to opponent compact scheme which we will be talking about, but 

we will in the meanwhile talk about evaluating second derivative as a sequence of two 

first derivative operations and with this we will conclude our lecture 30. 
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We were looking at high accuracy methods of computing. In that context, we were 

talking about compact schemes. Compact schemes typical example is given here in 

equation 9, where the derivatives determined by these prime quantities on the left hand 

side are related to the function on the right hand side. 

You can see that these are implicit methods because the derivatives that you are looking 

for they are coupled in this equation, as opposed to explicit methods that we have done 

before. So, there are some constants alpha on the left hand side, a and b on the right hand 

side, h is the spacing between the nodes, then what you can do? You can equate the 

coefficients of Taylor series on both sides. 

When you equate the coefficients of u prime on the left hand side of course, you note, it 

gives you 1 plus 2 alpha and on the right hand side, it is a plus b. So, next coefficient is 

the third derivative term coefficient. In the left hand side, you get alpha and on the right 

hand side you get a plus 4b by 6 and so on so forth. What happens is, if 3 coefficients are 

found out by solving let us say, these 3 equations 10 to 12 and that is how you get 3 

values of these constants. (Refer Slide Time: 05:27). 

This is what we usually would get; these are unique set of values of constants for these 

particular case. Since, you have satisfied this Taylor series expansion 9 up to (( )) 

derivative so, next drop term is the seventh derivative that is why we called it as a sixth 



order scheme. I emphasize the fact that you would always be satisfying equation 10 and 

that is the coefficient of u prime, because that is what you are trying to find out. Since 

you are looking for u prime, there is no way you can forget equation 10. 
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The satisfaction of 10 is a must and this is what we called as the consistency condition. 

This was a unique scheme given here alpha a and b. We talked about the leading 

truncation error; it is the seventh derivative term; that is why it is called sixth order 

scheme. 

We talked about Lele’s effort in trying to develop a fourth order scheme. Fourth order 

scheme means, you would have satisfied 10 and 11 and omitted 12; that would give you 

2 equations and 3 unknowns. So, you get one-parameter family scheme; let us take alpha 

be that parameter, then you can get a and b in terms of alpha. We talk about this and we 

said to look these coefficients that we are seeing; they are all real numbers however, 

there are to be a sort of a scheme. 
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In the sense, they are not like direct functions that only at the chosen value you have 

defined and everywhere the error is degraded. That is the question that posed here, 

whether they are discontinuous function or continuous function. We did come later and 

discuss further more saying that they are indeed continuous functions and that opens up 

possibility of obtaining optimized schemes, you can optimize it. That is what Haras and 

Ta’asan did. They did optimize scheme for evaluating the first derivative by minimizing 

the error committed by this approach with respect to the spectral method. 

They tried to look at the full range of k for the wave equation only and that was 

somewhat different than what Lele tried to do earlier. He also tried his hand at 

optimization because they were 3 equations, 3 unknowns; he looked at the departure at 3 

values of k and from there you obtain the values. 

Lele observed which the core of this subject is, if you take a look at these optimized or 

non-optimized implicit schemes; they are far more accurate than their counter part in the 

explicit schemes, this could be quiet significant. For example, a fourth order scheme that 

Lele obtained was out performing a tenth order explicit scheme. So, basically those made 

us observe that we really should not be bothered too much about looking at the 

truncation error. Instead, we should try to find out in the k space what is happening to 

error that is the whole rule of this game. 
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Basically, we define what we call as the resolution. Resolution is of course, what we are 

of, we are not worried so much about order of approximation; resolution means, how 

well you are resolving all length scale in the problems. You may have noticed that we 

have already talked about the Nyquist criteria the chosen grade that is one criterion. 

(Refer Slide Time: 10:18) 

 

But, the resolution is not the Nyquist criteria, it is something looked in that and that is 

what we need to figure out. We basically, would do that by looking at spectral analysis in 

the k space and that is what we did subsequently. This is where you begin by expressing 



the unknown let us say, at the jth node in terms of it is Fourier Laplace transform; please 

understand that this is an integral, this is not a series. So, this implies that you are able to 

take care of non-periodic problem; you are necessarily solving a periodic problem. 

(Refer Slide Time: 10:53) 

 

If you recall that in general, what we are doing? We are looking at a linear algebraic 

equation where the derivatives let us say, the first derivative is obtained by solving this 

linear algebraic equation (Refer Slide Time: 11:01). Most of the time you would note 

that, this A and B matrices are going to be constant value matrices; they do not depend 

on at what level of computation stage you are in, you can do that. So, what you can do is  

you can write it down instead (( )) u prime should be equal to C u, where C is A inverse 

B, but please pay attention that in your actual computation you would never do this, this 

A inverse operation. 
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What you just now noticed that A matrix - as you can see - from this say equation on 9 

would be the tri-diagonal matrix. Even then, you would not be doing A inverse of B; that 

is just for the sake of analysis we are writing A inverse B. 

(Refer Slide Time: 11:55) 

 

In the actual case, you will always solving this equation (Refer Slide Time: 12:06) 

because this will involve, so this is a tri-diagonal matrix here; this could be at the most a 

penta diagonal matrix. What you would notice? That when you write down like this u 

prime equal to A inverse B into u or what will be the bandwidth of the matrix? 
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This is interesting, because you see here we are solving an equation of course, on the 

right hand side, you do not have to worry about whether it is penta diagonal or hepta 

diagonal, because your fraction values will be given. 

So, you will make this product and it will be just a vector. This will be a vector that 

would be computing and then you will be solving a tri-diagonal matrix function; that is 

the whole approach that you would be taking. If I know the dimension or the rank of this 

matrix is N then we do 5N to 7N calculations in solving this equation. If you do A 

inverse of B what do you think the bandwidth scheme matrix would be? 
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Well, if you go ahead and perform that you would be surprised to see that C matrix will 

have non-zero entries about the diagonal, which spans about 10 or 11 points on either 

side. What does that mean? It means that C matrix is something like a banded matrix 

with 22 non-zero elements. That would be something like your twenty second order or 

twenty third order of equivalent explicit scheme. 

We discussed it in the last class also. Let us say, for example, a second order scheme we 

require 3 points; the middle point and that neighbors, the fourth order we need 5 points. 

If I have 22 points, the band-width of C matrix is 22 then, I am actually equivalently 

writing out about let us say a twenty third order scheme. So, this is the clinching issue of 

compact scheme that although you are solving a tri-diagonal system, you are developing 

an equivalent exclusive scheme, which is of the order of 20 plus which is a significant 

advantage that you should have. This is the prime mover for this whole activity. 

Now, you also notice that if we are looking at explicit scheme, what is A? A is going to 

be an identity matrix, because we are explicitly finding the derivative at 1 point in terms 

of the function values. So, A will be just simply nothing but, an identity matrix that is 

what we said. Basically, what we are trying to do? We are trying to develop a 

framework, where we can analyze a scheme. 



It is not necessarily has to be finite difference, finite volume or finite element all you 

need to do is come to up to this level A and B time permitting; I will just tell you how to 

construct finite element methods in this course or whatever, little time we would have. 

There we would note that this A and B matrix once again are going to be some constant 

valued matrices. This framework that we are setting up is going to be rather ((numeric)) 

and you could use it for any discretization scheme that you would like to. 
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Now, one thing that we did not talk about is this the band-width, which we are now 

familiar that C is not necessarily band limited by the band-width of A and B. So, this is a 

major issue that I emphasize again. That compact scheme appears local in nature because 

if you have looking at j th point on the left hand side, you have at the most j plus 1 and j 

minus 1 that makes it local. However, because of this A inverse B operation makes the C 

matrix band-width rather large. 

So that makes it basically a global approximation and this is what we call as the global 

near spectral approximation it is so (( )). Now, let me tell you the compact schemes are 

so much more handy and accurate that so called spectral element method an off-shoot of 

finite element method that often used by many people. Although they call it a spectral 

element but, they do use Lagrange interpolation functions of the order of 3, 4 or 5 at the 

most. There the accuracy is that much whereas, this provides you with a much greater 

accuracy and much more flexibility in solving problems. 



So, what we are essentially said in the last bullet is that if we are looking at any generic 

compact scheme, we can construct an equivalent explicit scheme that is the connection 

between an implicit and an explicit scheme. 
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For example, say you are trying to obtain the first derivative as we have seen here on (( 

)). First derivative is equivalent to multiplying the Fourier Laplace amplitude u of k by 

simply i k. Then let us say if we are trying to evaluate I think there is a mistake this thing 

should be u l prime. 

(Refer Slide Time: 18:12) 

 



What we are trying to do? We are trying to find out the derivative at the l th node, if I 

want to write this what I should be writing here i k u of k e to the power i k x l d k. This 

is the spectral representation of this (Refer Slide Time: 18:27). However, what we are 

doing here? We are writing it like this so, what we are doing? In a sense apriori, we do 

not know how many of those functions are involved. 

We would assume that B is full that means, we are taking the contributions from each 

and every node. So, what happens is we could project this; let us say, I could project it 

any other point say I could write it like e to the power i k and then e to the power i k, I 

will write x l minus x j. 

(Refer Slide Time: 19:24) 
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So, this quantity if I call this as some projection of the j th node on to the l th node that is 

what we are written here in equation 17. Although by derivative is on the left hand side it 

relates to the l th point whereas, I am evaluating the phase at the j th node, all the j th 

node. 

Then what will happen is if I just look at one particular point x j then I need to multiply 

by this projection operator that is what we have written here. So, you can see with a 

uniform (( )) point that will be simply nothing but, i k h times l minus j. That basically is 

further split into a real part and the imaginary part here I call it as r l j and plus i, I would 

tend to i l j. 

If I like to write the derivative at say jth node, I can write it here because on the right 

hand side we have contribution coming from all the other nodes, nonetheless we try to 

write an equivalent form where the phase is essentially written at the j th node. You have 

to understand that whenever we do this derivative operation, these are local operation 

means I am trying to find out derivative at the l th node, my phase is dictated upon by 

this quantity evaluated at the l th point itself whereas, what we try to do numerically; we 

try to add up all the points contribution in the domain (Refer Slide Time: 21:01). 



That is what? These right hand sides apply that if I am trying to find out the j th point 

this is not necessarily at the j th point but, this for u 1 to u n all the points are coming into 

picture. 
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That is what we are trying to state here, I have a sort of a global operation in numerical 

sense, but if that is to find out what is happening in the corresponding to theoretical 

spectral auxiliary mode, then I should look at this because now, what has happened here? 

This is like u j prime on the left hand side and this is my C matrix. Let me write this, so 

what is this C matrix? Suppose, I want to find out u j prime what I would do? I would 

take the j th row and multiply by the whole column. 

So that is precisely what we have done here; that is what you are seeing here. I have 

taken the j th row and I have multiplied I have done that phase shift business I project 

each and every point to the j th point, u 1 has been projected to u j, why? having this and 

so on so forth. That is why this quantity is within brace tells you how the projection has 

been take with the help of this C matrix. 

C matrix is also again a constant coefficient matrix, you do not have to worry about 

anything these are easily obtainable. So, having obtained this now what happens if this is 

my spectral representation. What we have done in a computational set? We would have 



done it like this instead of i k, we would have obtained some i k equivalent we know now 

how to calculate i k equivalent, I will show you here also. 

Then I would have multiplied by u of k and then ideally I would have like to be getting at 

the l th node itself, but I am doing it like i k h of I am doing it l minus j; so, this is what 

we are getting, this is what we want. What happens is if I look at this, every u j or u l has 

been projected to the j th point and that projection operation is given here (Refer Slide 

Time: 23:50). 

This is what we are getting this is the projection and then of course, you brought the 

phase back to j th node that is what we are looking at. This is essentially than the 

quantity within that brace is nothing but, (( )) i k equivalent, that is your i k equivalent, 

so i k equivalent is nothing but, your C j l into p l j and that you have to sum over all the 

nodes l running from 1 to n. 
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So that is what I said that you could (( )) i k equivalent at the j th node in terms of the j th 

row of the C matrix multiplying by that projection operator p l j. This is the story that 

you can now calculate k equivalent and remember this is something that we have 

achieved now. We have been able to find out this k equivalent at all the nodes 

simultaneously. 



(Refer Slide Time: 25:36) 

 

It is not a local analysis; it is not a global analysis, because all the nodes l equal to 1 to n 

are involved in evaluating k equivalent at the j th node. This is something that we did and 

tell you what this was not very old story, this we did over here it only few years ago, one 

of our B tech student Gourav, he joined me in doing this. Before that this did not exists; 

so, in a sense I think we did develop a spectral matrix stability analysis over the whole 

domain. 

This is important because local analysis is good but, in a long run what you need to know 

is how you are solving the problem in the full domain. You would know how each 

alteration at one point can affect the other points; this is what we need to do. Now the 

second point that you need to notice that in this k equivalent that you are obtaining is 

essentially a complex number with a real part, the real part will be giving you what? 

Here also I would be writing some k equivalent. If I now write that equivalent to consist 

of a real part then, what happens is of course, if I am looking at i k equivalent so this part 

is going to give a phase part that you can easily skip, the real part actually contributes to 

phase (Refer Slide Time: 27:07). However, what does the imaginary part do? Look at i, i 

was sitting outside and there is 1 inside so, this will give us something like e to the power 

minus k imaginary into x. 



Whenever you would estimate this k equivalent the real part would tell you how well the 

phase has been represented, while the imaginary part will tell you if we have added 

numerical dissipation. See that is why we have been discussing so far about central 

schemes. We do not want to needlessly bring in numerical dissipation because chances 

are there that will cause the solution to attenuate un-physically. So to avoid that, what we 

are doing? We are looking at central scheme, but suppose we have although seen that 

even though we are dealing with the central scheme that near the boundary we still have 

to close the system. 

We said that we will have to bring in near boundary stencil, which will only get 

information from inside the domain. So, on the left hand side it will come from inside 

that will go from right to left and on the other side you would get it from inside towards 

outside; so, we have talked about it. Those boundary closures, closing the boundary 

points would still bring us to one sided schemes. 

As you know, ((you have seen)) that if I have this A and B matrix, which are not 

perfectly central because the first row and last row we will have to change because of 

lack of information from outside the domain, we will have to keep one side a domain 

analysis. Then what happens? You will get a C matrix, which will not be symmetric 

which will be non-symmetric and that in turn will give you a k equivalent which will 

have an imaginary part. 

(Refer Slide Time: 29:25) 

. 



Why because you have seen that k equivalent comes from this C matrix here. If the C 

matrix is non-symmetric, then you can be rest assured that it will be non-symmetric and 

you will have an imaginary part and that can add to numerical dissipation. If you are not 

careful which happened to most of the people before we (( )) we found that many of the 

schemes those are being popular and used (( )) instead of numerical dissipation. They are 

having just the opposite effect they were actually making the flow unstable. 

(Refer Slide Time: 30:18) 
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The problem where the signals were propagating with the amplitude growing that mean k 

imaginary instead of being negative, where actually becoming positive; I will explain 

again, please do understand that well. Let me explain with the proper example to 

understand this role of real and imaginary part this would be useful. 

Suppose, let us take our simple example here. If I am trying to solve this equation, if I 

add numerical dissipation then, what do I do? I would add some, let me call this nu 

(Refer Slide Time: 30:34). See if nu is going to be a positive quantity than of dissipating 

the solution, this is like adding a physical dissipation. 

If I have a method where instead of solving this equation I have equivalent equation of 

this kind, what am I doing? I am actually adding a dissipative term only when nu is 

positive. If nu is negative the way we are doing here, then will be actually, instead of 

adding dissipation we will be pumping in energy to the system. 

So, this is what? I would call a dissipative method. Let me put this instead if I get like 

this a strictly negative quantity then what do I get? This will be not dissipative just the 

opposite of that so, people have called it as anti-diffusive method, we are adding anti-

diffusion (Refer Slide Time: 32:00). If I now go back and look at the methodologies we 

are talking about here. 
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Look at equation 22, if I have k equivalent like this then what am I getting; k equivalent 

u of k then e to the power i k equivalent x of j d k, this is what? This is let say we are 

finding out del u del x at x j location, that is what we are finding out. Now say k 

equivalent has a real and imaginary part itself well, let me write it. This part I am just 

leaving it as it is now what happens? This I could write it as i k real u of k e to the power 

i k equivalent x j d k and I will get minus k imaginary u of k (Refer Slide Time: 33:24). 

Now you see this equation, if you look at this equation, what we are getting here is this; 

del u del t plus this is this part so, this is this part that is C times this and this is 

additionally that has been brought in here (Refer Slide Time: 34:20). So I could take it on 

the other side then you can see the role of k imaginary. Now you see there is no i term 

here like here there is i term so this is like your second derivative brought in there. 

Now, you can see what we are talking about if k imaginary is negative then what will 

happen here? If it is positive it will work as a diffusive term, but if it is negative it will 

work as anti-diffusive term. 

(Refer Slide Time: 35:28) 

. 

This is something that you have to realize that how important it is for one to obtain this k 

equivalent. Then you would like to probably plot it in a non-dimensional form by scaling 

it with respect to the corresponding theoretical estimate that is why we will be plotting k 

equivalent by k. Of course, by now you are comfortable with the idea that instead of 



plotting it across as a function of k we will be plotting it as a function of k h. That will 

make your job easier because all the time we will plot between 0 and 5 that is the 

universal limit said by Nyquist Limit. 
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So that is what I just restate here: the ratio reflects efficiency of a method with respect to 

the best theoretical estimate that you can get through the spectral method. I emphasized 

also this path that if you would choose a symmetric stencil for the interior node that 

would give raise to k equivalent, which will not have the imaginary part. That would 

actually mean that you are developing a non-dissipative scheme that is what the second 

bullet states. 

However, we have also seen that we are forced to take asymmetric stencil for the 

boundary and near-boundary points that would make the method either dissipative or 

non-dissipative near the boundary. Then this is an implicit threat of compact schemes so, 

we have to be varying of it and we have to guard against it. 
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We will have to figure it out and we have also seen that these are all matrix operation, 

even if I do something or say j equal to 1 or 2 it is effect will percolate much more deep 

inside the domain; so, this is what it is. Let us look at some of the things, which people 

have being doing; this is taken from nick Adams thesis work, he suggested to use a 

interior stencil like this. As you can see, this is the on the right hand side, we have a 5 

point molecule like what we have already stated. 

This you can do it only from 3 to n minus 2 so, you need to have closures at j equal to 1 

and j equal to 2 and as we kept saying time and again this will have to be one sided. So, 

at j equal to 1 it would be add mixture of u 1 prime and u 2 prime on the left hand side 

and on the right hand side also it has to be one sided, right; that is what is done, here you 

can convince yourself. 

You must do it yourself, do a Taylor series expansion and check what is the sort of order 

of this team? You would be noticing that you are matching the first and third derivative; 

this is essentially a fourth derivative stencil that fourth order stencil that you see in 23. 

Same about this also for j equal to 2 you take a stencil, well this is somewhat slightly 

better on the left hand side; again you have a symmetry though 1 4 1 and same thing 

about the right hand side also. 



You can see there is an anti-symmetry that is what you require 3 and 1 both have 

amplitude equal to 1. If the point j equal to 1 that may give rise to some problem 

whereas, rest of the point we have a perfectly symmetric stencil on the left hand side that 

you see 1 3 1. On the right hand side you again get what you want in the anti-symmetric 

coefficients; j minus 2 is minus 1, j plus 2 is plus 1, j minus 1 is minus 28, and j plus 1 is 

plus 28 all are divided by 12 h. 

So you can see that again we can do a Taylor series expansion and you would probably 

note that these are sixth order. Basically, Adams started looking at these problems using 

a sixth order interior stencil and fourth order boundary stencil. What do you do? You 

have to do a similar thing at j equal to n minus 1 and j equal to n; j equal to n minus 1 

would be nothing but, a mirror image of 24, this will be u n, this will be u n minus 1 and 

this will be u n minus 2 (Refer Slide Time: 40:15), whereas what will happen here? 

Please note this; on the left hand side the coefficients remain as they are, on the right 

hand side you are going to see anti-symmetry. So, you will write it here for 24, instead of 

3 we would be writing u n minus 2 and this will be u n but, in addition we must have a 

minus sign. You can convince yourself that this would be just the anti-symmetric 

representation of the right hand side of 24. 

So, same thing holds for j equal to n that would be a mirror image of j equal to 1; left 

hand side coefficients remain as they are, replace u m prime by u n prime and u 2 prime 

by u n minus 1 prime. On the right hand side, you will be writing instead of minus 5 u 1 

you will be writing plus 5 u n, then instead of writing 4 u 2 you will be writing minus 4 u 

n minus 1 and then minus u n minus 2. 

So, this is the way you have the full A and B matrix set up for you. All the time 

whenever you need to calculate these derivatives which I have given on the left hand 

side, you will be solving this equation by tri-diagonal matrix algorithm. 
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So that is the practicality of this issue. I think that is what we explained just there; that 

we have near boundary point stencil which are fourth order accurate and the interior 

points are sixth order accurate, formal accuracy. This is one of the schemes that were 

used by Adams; there is this group from nasal army carpenter. They used this type of 

scheme and what I just now said, I just am showing you here. So, what about this scheme 

27? 27 is basically something like what Adams took actually for the interior, sorry; for 

24, you see Adams took this scheme, which is a fourth order accurate scheme but, it is 

symmetric that is what I mentioned. 

In the carpenter scheme the interior nodes are actually this; the same equations that 

Adams did, this is for j equal to 2 to n minus 1 you can see they can be applied all the 

way up to 2 to n minus 1. You need to only close the system by having a scheme for j 

equal to 1 and j equal to n. So, this 2 are written here and what I said about how to write 

out the anti-symmetric scheme 28 is just the anti-symmetric of 26 on the right hand side 

that you can see. 
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To compare with this fourth order accurate compact scheme, carpenter also looked at 

explicit fourth order schemes and this is what is given here. You see when you go to 

explicit fourth order scheme here on the right hand side in 31, you can see you need j 

minus 2 to j plus 2 so, you can write it for 3 2 n minus 2. Even though we are doing 

explicit method your work actually increases because you have to add two more 

additional closure schemes for j equal to 1 and j equal to 2, they are also written like this. 

I suppose this 29 and 30 they are also formally fourth order accurate. The whole idea in 

this exercise by carpenter and his colleague were to compare a fourth order explicit 

versus fourth order implicit scheme, I will show you the result now. 
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I think maybe I should first show you the result, and then we will come back here again. 

If I look at fourth order implicit scheme what we have here is on this side we have 

plotted k equivalent by k, on this side we have plotted k h. You can see we have taken a 

domain from j equal to 1 to let us say 31 and we are showing half the number of points, 

because it is perfectly symmetric. If you see only one half you can imagine what is 

happening on the other half because there will be coincident on the real part. 



The left hand side is the real part of k equivalent by k and ideally you would want it to be 

equal to 1 to as large a range of k h as possible. That is what we want because in a 

spectral method that remains one although we have 2 k h equal to 5 and then falls off at 

the Nyquist Limits. We would like to do that but, in this compact schemes you would 

notice they do remain one to a pretty large extent and then this starts falling off and this 

is what we call a filtering of the solution, you see this is what you may have done. 

I do not know if any of you have taken this course on electrical engineering, they talk 

about filtering low pass, high pass filter. Basically, we have seen how this filter is work. 

You can tune the filter and selectively attenuate or amplify different frequency range. It 

is also the same way here, instead of time domain we are looking at in space and instead 

of looking at frequency, we are looking at wave number; that is the only essential 

difference but, other ideas are exactly same. 

So what you see that compact schemes or any discrete scheme as this attribute as we 

have plotted. We have seen that they have this attitude approach to make this k 

equivalent k go to 0 at 5 we have done it. If we have looked at c d 2 and c d 4 expansions 

in the previous part this is what happens. However, you notice one very interesting thing 

about this at j equal to 1 that is the inflow part of the domain look at this. 

It has a very exaggerated overshoot, what does it mean that some of those intermediate 

wave numbers are weighted more than they would have been even for a spectral method. 

Whether this over emphasizing from k component is good or not we will talk about it 

later, we will not appreciate it now. But, we do agree that this is not physical, physically 

it should have been 1. Then it should have fallen to 0 and this departure overshoot is 

significantly more than this filtering attribute of any discrete scheme. 

You also look at say imaginary part that is shown here (Refer Slide Time: 47:40). We 

have plotted k equivalent by k imaginary part versus k h; what you notice that j equal to 

1 line actually goes off to exceedingly high value. These positive values I think here we 

have taken a sign inbuilt into it that is why all this positive values imply numerical 

instability. 

So, what it actually tells you that in the process of spatial discretization itself if you are 

not careful instead of dissipating the solution, you actually are going to pump in energy. 



That would be quite catastrophic as you can see you try to use this and try to solve even 

this equation, which is what you are going to do as your next assignment. I suppose, you 

will get hands on experience in analyzing schemes and calibrating it with respect to a 

standard problem like this (Refer Slide Time: 48:45). You would be able to see what this 

is doing, so the first point is very badly behaved as we can see here, this goes off to a 

value of k equivalent by k is 5 times. 

This is exceedingly high value so, the same thing happens with other nodes also; j equal 

to 2 3 and so on so forth. What you are seeing that is what I mentioned a moment ago 

that although you are making a mistake at j equal to 1 taking a wrongly directional 

stencil that effect is percolating inside. You are seeing that it is effect is felt at j equal to 

2 3 all the way and only when you are substantially inside, then you see it is becoming 

what you wanted to be it is a symmetric scheme. 

You want the imaginary part to be 0 and that is what you are seeing only near the Well, I 

would say j equal to may be 13 14 that is what we have getting, even this value here I 

think 5 or 6 they are unstable very clearly. You would also see that some of these things 

are very interesting that it goes up and down; so, it shows you that instabilities are very 

selective in across a small range of k, you have to do that. This was what you see for the 

implicit scheme and you can see this k equivalent by k here is equal to 1 all they up to 

about 1, above it is even more than that it is about 1.2 or something. 

(Refer Slide Time: 50:24) 

 



Now, if you look at the corresponding explicit scheme you can see what if you are 

getting the real path is on top and you can see it falls off from a value of about point 6 or 

4. Although you are having both the methods at fourth order scheme but, explicit scheme 

allows you to maintain accuracy only up to point 5 point 6 whereas, the implicit scheme 

allows you to go to twice the range. 

So, what does it mean? That if you are solving a problem you should be able to do 

accurate calculation by taking half the number of point, if you are adapting the implicit 

scheme as compared to the explicit scheme. If you have let us say a 3 dimensional 

problem and each direction you get a benefit of this kind the factor of 2 reductions. So, 

you are actually going to get by with may be about half the number of points in each 

direction that amounts to about 8 to 10 times benefit. 

In fact we will come to some schemes, which we have developed here itself. We get such 

benefit in each direction by a factor of 8 to 10 and you can understand that can translate 

into benefit of the order of 500 to 1000 times. That is what we have been doing for last 

10 years using pc to compute problems, which others use super computers to do, so it is 

possible. So, we have exploited the benefit of implicit schemes; let us go back, this is 

what we talked about. 

(Refer Slide Time: 52:08) 

 



Now, let us talk about another aspect; we have been talking about the first derivative. 

First derivative we are evaluating by solving this equation or we are doing this u prime 

equal to C u. Suppose, I want to evaluate the second derivative then what I could do? I 

could equate the second derivative with the first derivative this equation is that but, if I 

write this so if I use this in here I am going to get (Refer Slide Time: 52:40). 

Basically, we have done it twice to get the second derivative. Now, what does it do? That 

is what we tried to understand and we tried to do in the initial stages when you are at it. 

We tried to evaluate the second derivative by this equation 32 and what you had noticing 

here is that this has been done in 2 step, first you solve a prime A u prime equal to B u 

and then you again solve it again A u double prime equal to B u prime. So that is what is 

implied by equation 32 here. Then let us say simplify the problem very much we take 

that say some sort of a stencil, which we had shown here, given here, this is Adam 

scheme. 

(Refer Slide Time: 53:52) 

 

We take n equal to 5 so, what do we do is j equal to 1, we use this equation j equal 2, we 

use this j equal to 3, we use 25 and for j equal to 4 we write out an expression which is 

similar to 24. 



(Refer Slide Time: 54:17) 

. 

For j equal to 5, we write out an equivalent expression of 23. So, if we do this now it is a 

nice C matrix is going to be nice 5 by 5 matrix and then I suppose some of you may be 

familiar. You can use this symbolic manipulator (( )) MATLAB tool box also as if 

maximize another one, you can use the symbolic manipulator and you can work out this 

C square. 

See all those schemes that I talked about the Adam scheme; the interior stencil was sixth 

order accurate, the boundary closure schemes were fourth order accurate. We use that 

combination of a fourth and sixth order and work out the second derivative analytically 

using the symbolic manipulator. You can see what this is; this is your c d 2 expression 

so, what happens to our obsession with order of accuracy? We used a fourth order and 

sixth order and this is an exact operation symbolic manipulator comes back and tells you 

that in effect you are doing actually second order accuracy. 



(Refer Slide Time: 55:41) 

 

So, this is clear evidence that worrying too much about the order of accuracy is not really 

something that we like to do. So that is the last comment that I made there. 

(Refer Slide Time: 55:57) 

. 

Now, if I go back to that Adam scheme, the previous example also tells you that 

sometimes doing this analysis over unrealistically small number of points can give you 

such surprises, see here this could be an attribute of taking only 5 points. Suppose, I 

would have taken 8 points or 10 points I would probably get something different. So, 

please do not over generalize. I think this comes as a warning for your exam question; 



you always saw a quadratic and you saw the product term is minus 1 all of you jumped 

the gun and said. 

Product is 1 so, one is more than 1 and another is less than 1. That is not true; we have all 

forgotten that both of them should be equal to 1 that is exactly what happens (( )) 

method. If you would have just done it, you have seen it so, please do not generalize. 

This is what we also seen that we try to see the sensitivity with n and done this exercise 

with the Adams scheme with 20 points and 30 points and when we saw there is 

absolutely no difference between the 2 sets of results. Then go back and adopt one of 

them; so, we have here on the conservative side, all the results that you see are going to 

be with 30 points at least. 

If you take any more number of points these are not going to be different. This global 

analysis tells you how this k equivalent by k the real path varies with k h for different 

nodes. Once again, you can see this first node is always will be here but, this is 

somewhat much better than the carpenter’s method. You saw the overshoot their 

reaching up to 3.5 and 4 here it has gone up to less than 2.5. 

We will talk about the role of j equal to 1 and j equal to n somewhat later but, let us first 

look at this results so, they do not look to bad. You see in the interior, you have a sixth 

order scheme and that is why you will see that k equivalent by k remains flat although up 

to 1.5, value is 1. It shows you that out of the full Nyquist Limit you are able to get 

almost half the range. I think this is instructive, because what we are going to do; the 

spectral methods are always using uniform spacing. 

You cannot use spectral method using non-uniform spacing whereas, this compact 

scheme we can use it after mapping your governing equation to a transform plane and in 

the transform plane you have equi-spaced nodes there you can use this. So this makes it 

somewhat of a utility that we will see as we go along. 


