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In today’s lecture number 29, we actually adopt a totally different method. So far, we 

have been talking about solution methods based on mathematical classification. From 

this lecture onwards, we are going to simply highlight the scientific and high 

performance computing aspect alone. 

In the process, we basically tried to develop high accuracy methods, which will by itself 

be non-dissipative, non-dispersive and which will have very high spectral accuracy. One 

of the candidate methods is basically a Hermitian implicit method, which is also known 

as the Pade approximation that gives rise to what is called as the general compact 

scheme. 
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So, we are going to talk about compact schemes now onwards. In the process, what we 

do in this compact scheme? We try to set up auxiliary relations in addition to the 

differential equations; we try to obtain the derivatives simultaneously at many points 

together. We begin this discussion by talking about the derivation methods for first 

derivatives adopting methods with stencils, which are essentially symmetric or central. 

By using Taylor series analysis we can set up methods, which are called high order 

compact schemes. This essential idea is to set up implicit relations between the functions 

and the derivatives and equating the terms order by order, we can really get very high 

order compact schemes. 

We perform a global analysis in the wave number plane for this compact scheme. We 

notice that many of the older compact schemes had some problem with the boundary 

stencil; we cannot explain it physically that this problems arise due to stability, 

instability or over stability at either end of the domain. We notice that when we have 

periodic problem, this does not cause any problem; it is essential a problem with the non 

periodic problem. 

As an example, we talk about a sixth order scheme that is due to Lele. We talk about in 

general, the basis for choosing this compact scheme because we said that these are 

auxiliary relations. So, there must be some basis; this relates to what we called as a 

consistency condition. There was another way of method that was investigated by Haras 

and Ta’asan. They tried to minimize the error as an optimization problem. They look at 

the problem in the wave number space and tried to develop a compact scheme. 

Let us get in to the real core of the subject. When we talk about scientific computing, our 

intention was to develop method which will give you accurate solutions; people do talk 

about high performance computing. If you have noticed my first lecture, it was a sort of 

ridicule on that claim, what the high performance is? We talked about what people used 

to do in 1980s? It is claim on supercomputing; on high performance computing as it is 

called. We have more computing power today that does not mean those people who were 

leading at research those days are doing the same today; there is a mismatch all along. 

So, instead of talking about high performance computing, we should focus our attention 

on accuracy because that is something you can define, which is not a fashion statement. 



See, tomorrow Intel will announce a new chipset and then, will be calling whatever we 

did yesterday was not high performance computing; it is not that. 

(Refer Slide Time: 05:10) 

 

We try to define everything with; that I would say with sobriety, to talk about what it is 

that we require. Basically high accuracy and that is what you notice. First point 

mentioned here is that, if you want accuracy of course, you will have to resolve all 

relevant spatial and temporal scales; that is what we decide to do. When we do that we 

also like to develop numerical methods which do not propose additional layers of sources 

of error. 

For example, now we know with our analysis that numerical scheme must be neutrally 

stable; cannot afford to have overtly dissipative solutions, which may look good, make 

us feel comfortable but, the solution are none the less erroneous. So that is not the way 

we would like to go; we would like completely non-dissipative schemes, so that we 

follow the physics of the problem. 

The differential governing equation themselves will dictate the accuracy; you do not 

have to do numerically something. Although, you may have noticed in yesterday’s 

question paper, last question that I asked; solving the convection equation by a first order 

upwind scheme and uniformly second order scheme, I ask which is better. The answer is 



the first order, because there you could choose parameters of CFL number n is equal to 1 

and then you would get most accurate function. 

That is something happens once in a while for its model equation for model parameters. 

Apriority we do not know the solution; so, we do not know how to select those 

parameters. We should not really aim at these two that we have seen is not working 

today anyway. The third path - it is a very contemporary path of the discussion, it is a 

global phenomenon that people do advertently compute and gets solutions, which is 

possible but, they are inherently wrong. This is true of especially in fluid mechanics 

when you are looking at high Reynolds numbers, high Rally number, and Aclare number 

flows, where you see that you have to resolve all those wave numbers. 

That high wave numbers as we have seen, we can invoke dispersion error. We often have 

this tendency in the absence of standard solution to view these spurious solutions as to be 

representing turbulence and that is one of the diseases of the modern day. We should 

resist from doing that. So, the third point is nevertheless still very important; we need to 

talk about now spurious dispersion. 

Someone I have said that you need high accuracy solution; so, basically what you need 

to do is reduce your discretization error. One of the major sources of discretization error 

is truncation, so people try to derive higher order schemes. Higher order schemes by now 

we know have lesser, so we always try to develop higher order schemes; but, as we 

proposed to do in this module of the codes to show that higher order is not synonymous 

to (( )) always, what should be attempted is basically classify method based on their 

behavior in the k space, because that is what we are trying to do. We are trying to resolve 

k different wave numbers. 

So, we look at in k space and find out how these schemes are doing. There we would 

notice as we intend moving that classification based on order of truncation error is the 

truly inadequate, we need to do better. Why and how we do it? That is the name of the 

game in this path. We are going to talk about the extremely high accurate schemes; these 

are called the compact schemes. 
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They are based on that is called as Pade Approximation. One of the attribute of this 

method is that you almost get near spectral accuracy, while keeping the scheme as 

compact as possible. 

(Refer Slide Time: 10:15) 

 

So that is what we will try to do, essentially this compact schemes are implicit in the 

sense that they relate the derivative with the function in an implicit manner as shown 

here in equation 1. For example, let us say we are trying to derive this nth derivative 

which is shown here on the left hand side with the superscript within the bracket indicate 



the order of the derivative (Refer Slide Time: 10:24). This is the nth derivative they are 

written in an implicit manner; they are not explicitly evaluated point wise; they are all 

indicated by the note index here j plus k, k goes from minus N l to N r and j is the point 

where we are actually may be focusing our attention upon. 

So, what you notice that for nth derivative of the right hand side, we prefer to write it in 

this way, h to the power n would be invoke in that fashion. So that this b k this 

multiplicative coefficient on the right hand side with the function are pure numbers, they 

do not depend on grid spacing. Whatever grid dependence comes that comes through this 

side, you have already noted that; first derivatives we always divide by h, second 

derivatives we divide by h square, so on so forth. 

This is as general pattern we would like to do. To tell to you that what we are doing here 

is not just simply a pedagogic exercise, which has rather relevant practical application. 

Let me tell you that although we are writing this generic equation for a great with 

uniform spacing h, but you can actually directly use it for non-uniform grid; of course, 

you will have do is, you will have to transform your governing equation, first you will 

have to do additional step there. 

Whatever, the governing differential equation you have in the physical plane or the 

partition plane, that is what we write most of the time. We transformed it into sort of a 

computational plane; in the computational plane, we always have uniform spaces. Once 

we decide to do that you realize that the scope of such an exercise expand enormously, 

you can perhaps do almost all possible problems that you have. 

In fact, I have told you that this method I am teaching you because even today the flow 

field around space shuttle is calculated by this method not by finite element or finite 

volume method, this has extreme applications and it has delivered, it is very satisfactorily 

so far. 
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Let us look up the bandwidth of such a scheme. Bandwidth is determined by how many 

points across which the derivatives are related shown by this N l and N r on the left hand 

side. Same way, we also notice that the bandwidth of the scheme also is determined by 

the function values. 

(Refer Slide Time: 13:24) 

 

So, what we are trying to do? Suppose, let me give you a flavor of the thing that we are 

trying to do. Let us say, we are trying to solve a problem, space time dependent problem 

which we always get; this is a very generic problem that we come across. A vector 



equation I am writing for fluid mechanics, this is what we do. This is what it is called the 

Navier-Stokes equation, most of you are familiar with but, what you notice is that we are 

talking here of special discretization. 

We are essentially talking about evaluating terms of this kind. In the compact scheme 

what you do? Earlier, what you have done? If we have term like this, we would have 

written it like this say u x del del x plus u y are del del y. Let us say in a 2d problem this 

is how we would be doing. Here, we would be writing the vector, so if I do it for x 

component, I will write u x. If I do it for y component, I will write u y (Refer Slide Time: 

14:00). 

Earlier, what we did in explicit method. We specifically wrote those derivatives here del 

u x (( )) but, here is instead of going through that route, we proposed to use this kind of a 

functional relationship in evaluating the derivatives. So, I could set up methods by which 

I could probably say calculate this kind of derivatives (( )) by using this equation given 

here. I could do that or the same way I could also use the similar sort of scheme by 

putting this n equal to 2, and then I will be getting this kind of terms. There you can do 

all this (Refer Slide Time: 15:05). 

So, basically the compacts scheme means we are trying to evaluate these derivatives that 

we have written here using this equation. We will do it because it delivers more accuracy 

but, we can realize that apart from solving the differential equation you are imposing 

some additional task on yourself writing such auxiliary equation. These are not part of 

the problem; you are doing it to evaluate those derivatives more accurately. Once you do 

those derivatives more accurately, then you will see the amount of benefit that you would 

derive. 

So, basically then what we need to do is for each of these derivatives that we are writing 

here, we would write out similar equation. Once, we do that we are going to use those. 

Once, we have evaluated from those auxiliary equations, these derivatives will then go 

into these equation and plug them there and (( )) that is the whole strategy. Now, you 

understand how and what way we are going to do (Refer Slide Time: 16:20). 
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That is why the bandwidth is important; we need to find out, how many points are 

involved in evaluating these derivatives? Why are these councilor equations that we have 

written? 

(Refer Slide Time: 17:01) 

 

If I would have written a corresponding explicit scheme, I would have probably just 

simply written like this and looking at the jth node and trying to evaluate the nth 

derivative. I would have probably just simply written a corresponding equation like this 



(Refer Slide Time: 17:05). We have written and we generally go from the bandwidth 

defines how far will have to go. 

We also notice that keep this concerns on the right hand side has this kind of a property 

what we are talking about here in terms of a k but, suppose if I write here if the b ks are 

symmetric, if this quantity is symmetric then, what do we get? We will get a symmetric 

stencil. That symmetric stencil would not involve the next or a term, so what I am trying 

to say will become very appropriate if represented by the first derivative; if I do then we 

can see the example clearly. What we do here? If we recall that we have done it like this 

(Refer Slide Time: 18:15). 

This is like your second order scheme and if I am not wrong, you can actually convince 

yourself what I am writing is correct or not by doing the Taylor series approximation and 

check that this is a second order scheme, this is a fourth order scheme that we know. 

What I am saying essentially is about the jth node, the coefficients are symmetric (( )) 

modules the sign are opposite, what does it do? Of course, it removes all odd or even 

(Refer Slide Time: 18:50). 

We will remove all the even derivatives, so that is one of the things. If we retain those 

even derivatives, they would have given rise to numerical dissipation, so we do not want 

to do it. As you see that, what we already know from explicit scheme? I have 

transferable to what we do with this implicit scheme also. 

On the left hand side, we would require this coefficient a of k should be symmetric about 

a naught and further more if we have the bandwidth N. If suppose, if I had additional 

term here that would have remain unbalance, that would have given us all kinds of 

derivatives and that would not give us a central scheme (Refer Slide Time: 20:00). Same 

way in the compact scheme also the centrality of the scheme is determined by this 

condition that a k’s have to be symmetric about a naught. The number of points has to be 

same on either side of the node under consideration. 

Now, what requires to be done is to fix of this coefficient a k and b k. How did we go 

about doing this? Of course, what we did was we wrote the Taylor series and equated the 

coefficients and pick the coefficients. For example here, you can find out what is b 1; b 1 



is 1 by 2 half, right? b plus 1 and b minus 1 are same in magnitude one is 1 by 2 other is 

minus half (Refer Slide Time: 20:54). 
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Here you can see, 1 by 12 and then two third, two third and again (( )). This is the way 

that we have done for explicit scheme; we can do the same thing here for the compact 

scheme to. So better to go and take a look at a specific example, talk of deriving first 

derivative in terms of functions. What we do? Perhaps take a case where let us say the 

first derivative is estimated by taking a bandwidth of 2, it is basically if we are looking at 

u j prime we take 2 points to the left, 2 points to the right on the left hand side. When we 

tried to relate the functions, the functions are what we have written down here involves 7 

points, plus 3 to minus 3 including u j that will be 7 points. 

So, this is a one of many possible ways that one can approach this problem. View this as 

a kind of a generic equation; so what happened is, in addition to the actual solution of the 

differential equation, first we will have to do this homework. Given the function right 

hand side, we are trying to find out what those first derivatives are; that is the auxiliary 

step that will have to go to in this exercise. 
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As I said that we have to relate these coefficients by Taylor series expansion. What we 

are going to do? We write this Taylor series expansion; we will have expressions of 

various orders of either side. We tried to match those coefficients and then the first 

unmatched coefficient that remains that determines the order of accuracy of the 

representation. 

For example, flip back to the previous page and if I look at the coefficients of let us say u 

j prime it will be 1 from here, from this and this I will get 2 alpha, from this end that I 

will get another 2 beta (Refer Slide Time: 23:23). So the coefficients of u j prime on the 

left hand side are 1 plus 2 alpha plus 2 beta. Same way, we could expand this individual 

group and find out that we would find this is the coefficient of u j prime on the left hand 

side; this is the coefficient of u j prime on the right hand side. If I satisfied this equation 

that means, what we have been very exact up to the first derivative; what satisfied is the 

next order path. 

So that is why we will call such an equation were we tried to evaluate those coefficients 

by satisfying equation 3 would lead to a second order method because what happens? 

What will be the next term? Next term would be the third derivative. So, the third 

derivatives when I match, then again I will get the next higher order scheme that is the 

fourth order scheme. The coefficients you can actually find out the third derivative on the 

left hand side invokes 6 times alpha plus 4 beta and on the right hand side you get this 



(Refer Slide Time: 24:46). You can very clearly see the pattern this is 2 square, this is 2 

cube and so on so forth; you can relate that very easily by that is specific way of 

composing that equation 2. 
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You can go through this exercise, and then you can see that if you match the coefficients 

up to fifth derivative by invoking the previous two equations plus this, then you end up 

with the sixth order scheme. If you additionally match the seventh derivative terms, then 

you will get up to their eighth order scheme and so on so forth. Now, the question is how 

many unknowns we have? We have 5 unknowns a, b, c, alpha and beta; that is what we 

are trying to find out (Refer Slide Time: 25:08). 

So at the most, what we could do? We could satisfy all of these equations, all of these 5 

equations that we have written so far 5 equations, 5 unknowns and then we have done, 

we can in a sense have a unique tenth order scheme out of this. However, if you try to let 

us say decide to go for a sixth order scheme, then what you would be solving? You will 

be solving these three equations and that is for the second, the first derivative, the third 

derivative, and the fifth derivative. 
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This is up to fifth derivative. So, we have three equations, we have to be then solving for 

those three equations what are the additional things that we have to do? We will come to 

that later. 

(Refer Slide Time: 26:45) 

 

But let us try to see what we do operational? Let us not just simply talk about what we do 

in an analic systems mode. What we actually do in computing? In computing what we 

are doing here as you can see on the left hand side, you have the unknown derivatives 

which I can write as a vector and that should be multiplied by a matrix, which we are 



calling as A. As you have seen, they happen to turn out to be there, we will see that 

constant coefficient entries of this matrix A for the derivatives and B the coefficients of 

the function; so that is what you will have to do. 

So you have that computational domain, you would be setting up an equation of this 

kind. You will be evaluating that each of those derivatives and purposely avoid to write 

which derivative it is. Let us say you have solving a 2d problem, you would have a pro 

problem; you will have probably 2 components of velocities and each one will have 2 

derivatives. We will have to solve such 4 equations, 4 sets of equations for calculating 

del u x del x, del u x del y, del u y del x and del u y del y. We will have to be executing 

this step for four such derivatives. 

(Refer Slide Time: 28:08) 

 

Now, suppose some may have difficulty in the beginning to appreciate what we mean by 

a periodic problem and a non periodic problem. I think this despite our various exposure, 

before; let us say, we take a domain of this kind and then we have discretize by 

uniformly space point and the points goes like this (Refer Slide Time: 28:25). 

The periodic problem is actually doing it repeatedly on the outside. So, this is something 

again not written explicitly in the book but, whenever you do any computing you choose 

a domain and you are trying to extract knowledge within this domain, how does that 

knowledge relate to what is happening outside? This is a question that has been sort of 



bypass and people probably do not appreciate; whatever may be the original nature of the 

problem, whenever we decide a domain and we do this, we have actually an extension of 

the same problem for rest of the universe. That is why what happens is, even though your 

original problem is non periodic and if you solve a problem in a limited domain or if you 

increase it, increase the domain size you happen to see a quite a bit of difference in the 

solution. 

What is a periodic problem? Periodic problem means, if I have let us say, the solution at 

u at x equal 0 is u at x equal to 1; this is the physical condition of periodicity of the 

problem so, physical variables of periodic what I just now said that in computation, we 

always have a periodic extension of the computational domain that is a different aspect 

that is what your numeric’s done. 

Whether you like it or not your numerics always do that; this is something you must keep 

in back of your mind. However, if this condition is not satisfied if this is true, then this is 

your periodic problem, this is what we are talking about physical periodicity. If u at x is 

equal to 0 is not equal to u at x equal to 1, then this is what we call as non periodic 

problem. So that is what we are stating here also that if we have a periodic problem that I 

have explained to you many times before this A matrix and the B matrix will be periodic. 

(Refer Slide Time: 31:05) 

 



We have also seen if I go back to this generating equation 2, if I designed to obtain the 

derivatives for such a system, you can very clearly see that j can start only from where it 

can start from. Now j is equal to 4 that is good, because you can see if I try to apply this 

at j equal to 3, I do not have the information; I am telling out of the domain. So you can 

see where this choice of the scheme originate is our ability to handle such equation in a 

most generic fashion. 

So there is this problem of compact scheme although it promises to give you high 

accuracy but, you have to see that to set up an equation like this (Refer Slide Time: 

32:00). You will have to apply such generic equation only in the interior nodes and that 

interior nodes starts from j equal to 4 here and ends at suppose I have n points, it should 

be n minus 1 right, so that is the whole idea. 

So what happens many times; to avoid such difficulties, you purposely set this c is equal 

to 0. Then you can start this thing stencil that we have written here from j equal to 3 to n 

minus (Refer Slide Time: 32:28). You can realize that there are so many variations 

possible but, it also tells you that if we adopt such a scheme we will have to do 

something special for the left over points. Suppose, I decide to take 2 then, I will have to 

write similar equation for j equal to 1, j equal to 2, j equal to 3, from j equal to 4 onwards 

we will be using this. 

(Refer Slide Time: 33:28) 

 



The same way we will have to write out equation for j equal to n, j equal to n minus 1, 

and j equal to n minus 2 because this equation will be varied from 4 to n minus 3. You 

got to realize that the compact schemes have this problem that if you have a non periodic 

problem, then you will have to add additional near boundary stencil that is what I was 

explaining to you. 

That you have to write additional such equations and those equations are what because as 

we are saying that we are restricting our computation in a domain; we have knowledge 

only about what is happening inside. We do not know what the states of the variables are 

outside. 

(Refer Slide Time: 34:02) 

 

So the near boundary stencil if I want to write it for j equal to 1 or 2 and 3 and so on so 

forth; I have to write those derivatives only in terms of what we know, we cannot get 

information from outside. Then what happens? See any derivative that I am evaluating 

here, the information only comes from interior of the domain on this side, what about 

here? This information also comes from inside (Refer Slide Time: 34:27). 

What happens then? When we write down this near boundary stencils then, we are 

actually imposing some numerical conditionality of the information propagation. On the 

left hand side, it goes from right to left and on the right side; it goes from left to right. 

Suppose, I am solving a simple equation like this (Refer Slide Time: 34:55). That is why 



we will be looking at this equation very often, this is such a nice equation; this actually 

set the goal standard for all computing. 

If you can do something with this equation just go home, do not waste your time. If you 

cannot solve this equation correctly, do not hope by any other fancy method if life will 

be easier. What is interesting about this is if c is positive, then what is happening? 

Information is propagating from left to right (Refer Slide Time: 35:23). 

Now, if I use this what we are suggesting that we need to have interiors near boundary 

stencil and this is actually the information is propagating this way and the numerical 

condition impose violets this (Refer Slide Time: 35:45). You would be assured you will 

be happy to note that when you violate physics, your numerical method actually grows 

up (Refer Slide Time: 35:30). Locally you will see that we are trying to oppose the 

propagation of the signal in the correct direction that will immediately hurt you in terms 

of numerical instability there locally. But, having said that this is something you must 

realize that in many such exercise, why does not create catastrophe? 

(Refer Slide Time: 36:36) 

 

Let us say, we are trying to solve this equation in a domain like this and we are setting up 

some near boundary stencils like this for say this 3 additional nodes on the left, 3 on this 

side. Then what will happen? Here we are sending the signals from this way and here we 

are sending it from there (Refer Slide Time: 36:36). This is what we are getting here is 



non-physical nature of this discretization whereas, this ((adds)) in the actual physical 

propagation of the signal. 

We can see that this ((adds)) but, we also know from our exam paper yesterday, we have 

seen that for part of appending if do not choose the answer correctly, you can overdo it. 

So, what happens here? This leads to numerical instability and this is physical, I will put 

it in parenthesis, I mean quotes that physical discretization it does not violate the 

directionality but, if you are not careful, then you may end up with lot of numerical 

dissipation. 

At the most you can hope to do it without any dissipation, additional numerical 

dissipation but, at least it would not do. Now, you may ask me a question then how come 

people still do it and get away with it? Well, the answer is right in front of you because 

what happens is apart from the signal itself the error would also be govern by an 

equation like this but, with some right hand side that we have established very clearly 

(Refer Slide Time: 38:51). 

Now what happens? That means the error also has a directionality that shows that it 

should go in the same direction as the signal. What happens is as the error is going to 

grow here but, it is also convicting; after few time step, the error which was here it will 

be inside beyond this third point. Once, they are inside they are not violating the physical 

issues, physical direction. 

What happens is this is an actual tragedy of computing because what happens is people 

do this, then they go back and say look I am doing direct numerical because what has 

happened? You are artificially creating a source of error because of numerical 

discretization and that error actually goes inside your computing domain. Once, they are 

outside these bad nodes there no more violating the physical directionality. 

Because there your scheme is and when you are doing perfectly central scheme that is 

why you were looking at central scheme. We do not want one to impose additional 

dissipation; so, from j equal to 4 onwards you are in a safe territory. So, what happens is 

in a problem like this if I am solving, then I am always in a furious sense I am exciting 

the system from the left hand side. 
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The same way when I am coming on these last 3 nodes if I am not careful, I am adding 

numerical dissipation so that error is decaying also. What happens is without your 

knowledge or intent, you are exciting the systems furiously on the left and damping on 

the right (Refer Slide Time: 40:30). 

So what happens is if you are solving a problem, you would not require any disturbance 

and you would still see as if the flow has been excited. That is what I said this is the 

tragedy, because people do not have the proper quantification of what is this additional 

excitation that we are creating. See the numerical excitation and the physical excitation, 

in a real physical problem not necessarily going to be the same, right? If I take a different 

numerical method, I will excite the problem in a different fashion. 

In the physical world, the background disturbances are probably sometimes not known, 

you know my favorite example of tossing a coin; we do not know what the source of 

error is there. That is why we will never probably able write out a governing equation, 

evolution equation if I give you an initial condition, a coin is facing head upwards at this 

time, at this height you toss it with this much of force, tell me what will be the outcome 

when it comes back on the ground; that is the simple problem of tossing a coin, right. 

Newtonian mechanics but, we still have not seen the end of the problem, we do not know 

what this background sources whether we are modeling all possible disturbances are not 

we will never be able to know. 



Suppose, you give it to some people involve in mathematical numerical modeling, they 

will always come out with some results. The paper we will be announced in nature 

saying that if you face this word with your left hand tuck in your pocket this coin would 

came face head up. 

So there would be lots of such exciting papers and commentaries are experts, how things 

are changing we have now supercomputing ability. So that is the story, but the point 

remains that if we are solving a problem, any problem we cannot characterize the 

background distance. 

We do not know we have not been able even today, definitively establish the causality, 

you know about causality I just read 2 days ago this new theory has been proposed for 

this large colloidal. Apparently, the people behind this they are afraid that it will not 

work so, they have said if it does not work it will prove god exist is for rest of you to 

figure out what it is? 

Usually start what they are talking about I do not; they say that some particles called 

Higgs boson, who will be created. The gods do not like it, so god will not allow this 

collider to function that is the end of the story. You prove two thing Higgs boson exist, 

god exist by nonfunctional collider in Geneva that is the wonderful research that we do 

this is. 

Anyway we are coming back to this, so what has happened here that we create some kind 

of a numerical disturbance in the left hand side and we expect that is going to make the 

physical universe. That is bit of a sort of optimism, I suppose people are optimistic. So, 

we cannot find them for that but, let me assure you that we do not know the exact 

relationship between physical disturbance environments with numerical. 

We expect that all numerical simulation will eventually lead to the same physical results 

has yet to be proven. This is something you must realize that many of the papers that you 

would be looking at in various journals, they will be saying that we are doing direct 

simulation means with we do not have to a characterized the background disturbance and 

we will still get the result. Well I suppose that is yet to be proven and if somebody does 

it that should really deserve sort of credit for that kind of proof. 
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So one of the side of that equation 2 that we have written here that if we somehow decide 

a query that we said beta equal to 0, then in the left hand side we have a tri diagonal 

matrix structure, a is a tri diagonal matrix. Then we already know how to handle that 

because we have the Thomas algorithm here and that should allow us to solve (Refer 

Slide Time: 45:40). 

Well, please there is mistake here (Refer Slide Time: 45:46), so what happens is that in 

solving this auxiliary equation, you will have to be using Thomas algorithm. We know if 

the size of the matrix is n while matrix (( )) of doing 5 into 7 and calculations depending 

on whether you have a periodic problem or a non periodic problem. 
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So let us do a concrete example, it is better that way; that we set to begin with beta and c 

is equal to 0, left hand side we have a tri diagonal structure but, on the right hand side we 

have a penta diagonal structure, it is going from j minus 2 to j plus 2. What you do is 

write down the Taylor series, equate the coefficients of u prime, u triple prime, and u (( 

)) then you will get this three equations for this three unknowns. You solve it to get this 

unique value; this is unique prescription of the problem. 

However, you realize that this scheme we can only use it from j equal to 3 to n minus 1. 

Now for 1 and 2 with this equation will not work, 4 is for n and n minus 1. What you are 

noticing here? I would like to draw your attention to this what I call here as the 

consistency condition, we are in the business of evaluating the first derivative. 

So somewhat may will have to satisfy this equation for sure, because that is our basic 

business, evaluate the first derivative correctly. Satisfaction of this equation is a must and 

that is why you call this as a consistency condition. So please do realize that if you are 

evaluating a first derivative, then co-efficient of u prime gives you the consistency 

condition which you cannot give up. 

So this is a clear example of how these derivatives can be worked out. You also realize 

that if you have a periodic problem, then you can use this same stencil for all point 



because you have knowledge of what is outside the domain, where you do not have any 

problem. 

That is why many times if you are setting up some new method, then do look at periodic 

problem because periodic problem helps you avoid this kind of numerically generated 

issues. 
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Although that becomes little academic in exercise but, it is still assures that you are in the 

right track, that you are doing it correctly. If I now look at the previous exercise that 

sixth order scheme, we will look at for the term that is drop out is proportional to h to the 

power of 6 and that is associated the seventh derivative. 

Now, what Lele did? He tried to write it in terms of this. See you have three equations. If 

we decide to solve few of the equation and keep one of the coefficients as a parameter let 

us called alpha as that parameter; basically, what we are doing in writing this. We are 

solving the first two equation and then we will get the value of a and b like this that will 

be a kind of a fourth order scheme. So, for fourth order scheme a is given in terms of 

alpha and beta sorry a alpha and b, you also given in terms of alpha. So we can choose 

different values of alpha and we can evaluate the corresponding b and we will develop a 

fourth order scheme. 



Now if I look at this there are couples of issues that comes in the four that how do we 

choose this value of alpha let us say in this case here. 
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We had seen that if we choose the value of alpha as one-third, then of course, we go to 

sixth order accuracy, but suppose instead of taking one-third if I take 0.3 then what 

happens? It is not surely a sixth order scheme, it is a fourth order scheme but, how good 

it is compared to let us say if I choose alpha equal to 0.25 or say some value 0.29. 
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Does it mean that these coefficients are some kind of a magic attractor fixed at these 

points; that means, what I am saying that if I try to write down the error committed. 

Suppose say, I try to plot versus alpha a error and I have a value here alpha equal to one-

third; I know if I choose this, then it becomes a sixth order accurate. 

My question is what happens to the error in the neighborhood of this point? Is it a 

continuous function or a discontinuous function? This obsession with order becomes so 

much that people will tell you that if you just go little bit to the left or little bit to the 

right, you have lost the sixth order accuracy and you have jumped down to fourth order 

scheme; so, you may have committed huge amount of error. 
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But is that true that is the question that we are asking the secondly here that if I look at 

this discrete derivatives, are they discontinuous functions of this coefficient? This is 

something we must keep in mind. You may also like to know I mean why we should 

choose any particular value is there any physical basis or not. 

Now, that is the question that we are posing here in the end that if we perturb these 

coefficients from the obtained value apart from satisfying the consistency condition. So, 

whatever perturbation we do give the perturbation should still satisfy the consistency 

condition. 
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You recall that 1 plus 2 alpha should be equal to a plus b that we have written 1 plus 2 

alpha is equal to a plus b. So, what I am suggesting to you that will perturb all alpha a 

and b in such a way but, this equation will still be valid if I do that what do I get? Do I 

get a good accuracy or its going to be poor? This is something that we would be talking 

about. 
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Well, there are of course, of no prize for guessing that this discrete approximation of any 

derivative is essentially is a continuous function, it is not discontinuous as just sort of 



supporter of higher order schemes will try to tell you that if you do not choose alpha 

equal to one-third, the error is not like this that you have a point here then, next you have 

error going like this or going like this (Refer Slide Time: 53:20). Error does not behave 

like this; error has to be well; it could be still some continuous functions like this. It 

cannot just simply be at 1 point here and the next point it should be somewhere else, it 

does not happen that way. 

This issue was addressed by this two scientist from Israel, Haras and Taasan, they 

actually obtained optimal value of alpha a and b. To figure out how this numerically 

established derivative departs from it is a very accurate method of evaluating. What we 

are basically talking about let us say, I have this equation given by this (Refer Slide 

Time: 54:12). So, the entire special derivatives are embedded in this. So here a discrete 

operation with a grid of size, I will call that as L h u of h. 

So what Haras and Taasan did look at they set up optimized objective function on the 

error that they said like suppose, I look at this, this is the my exact operator minus the 

discrete operator (Refer Slide Time: 55:00). This is going to be a function of all these 

parameters that we have alpha a b. Now, we try to take that objective function, we try to 

minimize the error with respect to alpha a and b, those will give me additional equations. 

How many such equations we can generate? Two only at the most, right. Because we 

have to still satisfy the consistency condition that takes away one degree of freedom, you 

can at the most equate those. That is what Lele was talking about you know 2 parameter 

family. So suppose, I fix my alpha based on whatever a and b, I get satisfy the 

consistency condition and then I minimize the error with respect to let us say a and b. 



(Refer Slide Time: 56:07) 

 

Or that means minimize the error with respect to let us say alpha. So basically the fourth 

order scheme will have only one condition originating from this objective function. 
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Well, this is something what you may have done in your high school, right? 

Optimization by looking at the first derivative and the second derivative, we can find it 

out. So, those two parameter family that Lele was talking about sorry single parameter 

family, essentially gave a fourth order scheme. So, everything the error including is 



written as a function of alpha and we try to minimize that error with respect to alpha and 

that closes the system and you get a optimized fourth order scheme. 

What Lele did notice was, that was a landmark paper; by the way, incidentally alumni of 

this institute. You should be happy to know he is a faculty at Stanford now. He did this 

very important paper that he wrote in 1992; found out that this optimized fourth order 

scheme actually provides you accuracy that is better than explicit tenth order scheme. 

That is the reason the motive for which we will adopt compact schemes, because this 

gives you unprecedented access to accuracy. 

That you would see if I were to get a tenth order scheme, how many points we will have 

to take as a stencil? If I am taking explicit method tenth order, so it should be 10 plus 1, 

you have seen. Second order you required 3, fourth order you required 5 so and so forth. 

If we look at the central scheme it is always plus 1. So, you could notice this very 

interesting thing that whatever accuracy that you are getting from an optimized fourth 

order scheme is better than tenth order accurate scheme obtained in an explicit manner. 

So, we basically come to this observation that the formal accuracy of truncation error is 

really not the criteria; a better depiction would be looking at in the spectral plane. Now, 

you realize that why we have invested so much of time and effort in learning about 

waves and spectral analysis. Without that, we would not be able to see all this clearly. 

We will do that systematically as we go along. 


