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Spectral Analysis of Explicit and Implicit Schemes 

This is lecture 28; we are going to talk about spectral analysis of explicit and implicit 

schemes. 

(Refer Slide Time: 00:26) 

 

The specific content of this lecture is as follows. We will be first talking about how error 

propagates in convection dominated physical systems. That should set us up for 

requirement of high accuracy schemes and what exactly we want to do with that. Once 

that is discussed, we would move over and look at certain explicit central schemes. We 

will look at it from the physical plane point of view, as well as in the spectral plane. The 

spectral plane will be indicated by the wave number k. Having done that, we would try to 



talk about upwind schemes; we will realize that many times central schemes by 

themselves would not be adequate. We would require some bit of numerical dissipation 

coming through upwind schemes that is what we need to represent; we will find out what 

it is. 

Once, we have done that representation, we will look at role of upwind schemes; what 

exactly it does? We would notice that the role that it plays has an analog with the 

negative feedback that we have in electrical circuits. So, that is why we will show you 

the connectivity of this concept with negative feedback stabilization of systems. 

Having done, we have decided upon the schemes, whether we take central schemes with 

explicit numerical dissipation added or the upwind schemes which was built in implicit 

dissipation. Next job in our view would be to really obtain the properties of numerical 

schemes. Talking about the properties, we will be talking about the same three quantities 

that we talked in the earlier lecture; that is, the first thing is the numerical amplification 

factor, its magnitude, we need to now ascertain about whether the system is stable or not. 

Along with that we need to find out what is the associated phase shift that comes about 

with each time step of integration. That will bring about numerical phase speed, which 

we have called here as c N. 

Finally, we would look at the group velocity. The group velocity is one of the most 

important parameter, we need to characterize the speed at which the energy in the system 

propagates and that is indicated by V g N. 

Basically, having talked about the explicit schemes in the following, we would finally 

just setup some requirements. Should we decide to adopt similar high accuracy schemes 

in an implicit framework? 
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Let us begin by looking at the error propagation equation. To understand it, we once 

again resort to study the one-dimensional convection equation, which shows how the 

variable u propagates in space and time in one-dimension; c is the phase speed. As we 

have noted, in our discussion on waves, we have seen that this is a non-dispersive 

system, so the energy also propagates with the same speed c that is also the phase speed 

in this case. 

Having decided to adopt this equation as our model equation, we can obtain the 

numerical solution that we have identified here by u subscript N. We take a difference of 

it from the exact solution and we call the quantity on the left hand side as the 

computational error. 

The numerical solution that we obtain, we could decide to express it completely in the 

spectral plane in terms of the wave number k and the circular frequency omega; that is 

one way of writing it; that is what we have done here. Alternatively, we could write it in 

terms of these three parameters; that we just now talked about. Namely, the amplitude of 

the amplification factor, what do we mean by the amplification factor? That will be 

apparent when we look at the last equation. 

Amplification factor basically tells you, from the Fourier-Laplace representation that we 

have shown here, if we look at the Fourier-Laplace amplitude at the advance time step 



that is U of k plus t plus delta t divided by U of k at t that would be our numerical 

amplification factor. 

The first part of the solution is the initial spectrum that is given by the initial condition of 

the solution that should be kept in advanced in time, which is given by the second factor, 

which is nothing but mod of G raise to the power t by delta t. t by delta t actually gives 

you the number of time steps that we have essentially taken. 

At each time step, it amplifies by factor of mod G, either it amplifies or attenuates; that 

would be determined by the property of mod G. In addition, this complex G that we have 

written here, it would also give raise to a phase shift at each time step. After N such time 

step, we have arrived at t equal to t that would give us a kind of a numerical phase speed 

that we have written here as c of N. Then, basically in this equation E-3, we are 

representing the solution in a sort of a hybrid fashion, because the space x has been 

represented in terms of the wave number k, but the time is retained as it is. 
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So, if we look at the expression that is given in the previous slide, we can immediately 

obtain the space derivative and the time derivative one at a time. The expressions are 

given as there. Please note the fact that in the previous slide the time dependence actually 

comes through the G term as well as e to the power minus i k c N t term. It is for the 

same reason that when you take the time derivative you end up with two sets of terms in 

e phi. 



What you could do is, basically use the definition of the computational error that we 

have shown and try to set up error propagation equation. The idea is simple, if the 

governing equation is given by this differential operator on the left hand side here, we 

want to see the error also does analogously the same thing or different. 

Please note, this is a linear equation given by the standard work done by previous 

researches. It was conjectured that the error would follow the signal itself. However, 

what we are showing here is that if we represent e as u minus u bar N, then basically we 

will have two sets of terms in E-6. You notice that this set of term is analytically equal to 

0. 
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What happens is, basically the error is actually dictated by this two terms that comes 

about numerically. So, this is essentially the idea of setting up this error propagation 

equation. So, that is why we rewrite. 
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If you note in the previous slide, this right hand side had c here, whereas as we mention 

in computation what will happen is that c will be replaced by c of N - the numerical 

phase speed. So, that is why we have done this following manipulation. 

We wrote down the first line here, in terms of c N. In the second line, we have subtracted 

it out and this is what we get. Essentially, then what we can say is the error is governed 

by the left hand side operator, which is forced by the following set of terms that is on the 

right hand side. Since, we know what the expression for u bar of N, we can substitute 

those quantities. If we do that in E-7, we get this following representation here. 

So, one sort of term depends on the numerical phase speed, the other set of term depends 

on the modulus of G. Look at the natural logarithm appearing over there. 
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The last term that we had is the phase dependent term, we can integrate by parts. We can 

see that the equation further more simplifies in terms of this. You notice that naturally a 

term comes, which is given here, which is nothing but d dk of c of N. 

So, this basically tells you that your original problem, c was a constant. What we are 

noticing here is that we are providing the possibility that c of N the numerical phase 

speed need not necessarily be a constant; it could be a function of the wave number 

itself.  If that is so, that would be contributed by this last term given here on this equation 

E-9. 

Basically, we are looking at this expression. We can substitute it back for this set of term 

in the error propagation equation; we come out with this set of terms. We will notice one 

thing very clearly that the first set of term that we have here depends on numerical 

amplification factor. If the error has to be governed by the same equation as the signal 

itself, then we must have modulus of G equal to 1. 

What it actually tells you very clearly is that if you really want a well behaved algorithm, 

then you must have modulus of G equal to 1. Any numerical scheme for which modulus 

of G is not equal to 1, we will contribute to forcing of error through this term. 



The second set of term tells you that numerical phase speed is going to be a function of 

the wave number k, if it is so that also will give raise to additional error. This property 

where c of N is a function of k is an attribute of a dispersive system. 

If c N was not a function of k, we would have called it a non-dispersive system. Our 

original equation was a non-dispersive equation, because there c was constant, but here 

numerically we have converted a non-dispersive system to theoretically a dispersive 

system. 

Now, individual algorithms will provide us an estimate for modulus of G and the 

expression of c N. From there we should be able to find out whether the method is the 

right one in terms of the error due to instability or stability, or error due to dispersion. 
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Having laid this ground work, we can now state what exactly we really want to do, if we 

want to perform high accuracy computing. First and foremost, we agree that what we 

require any space and time scale that is relevant for the physical problem, they have to be 

resolved. The first term is very obvious; we need to resolve all physical time and length 

scales. 

Now, the second term is what I just now described to you that we need to have mod G 

equal to 1; that means, we need to have a neutrally stable system, we cannot have 



instability, then the solution will blow up, you will immediately know, but what is not all 

is realizing that you cannot also have so called stable dissipative system. 

The basic idea is the following. Numeric should not impose its role on the physics of 

problem, so numeric should stay neutral. Physics should dictate, whether the system is 

stable or unstable. So, that is why numerically we do not want to add any dissipation, this 

is absolutely unwanted. 

Now, we have also seen in the previous slide that there is another source of error that is 

where the numerical phase speed becomes a function of wave number. We say that is a 

hallmark of a dispersive system, we do not even want that. That is what we have stated in 

the 0.3 that each and every wave number component should propagate its phase and 

energy at the current speed and that I have stated to you that is, the group velocity. We 

will go ahead and figure out how these things are evaluated, and we will find out how to 

avoid spurious dispersion. 

These are the three prime requirement of high accuracy computing system. Next, what 

we also realize that when we are replacing a differential equation by its discreet version 

we are essentially indulging in some amount of truncation of terms; that error is what is 

called as a truncation error. It has become quite common place for everyone to look at 

the property of the numerical scheme in the physical space. Then people try to talk about 

the order of the discretization. It is hoped that if you have a higher order of the 

discretization, lower will be the error. However, this is somewhat misleading, because 

the error behaves like this. 
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Suppose I have nth order system that would be given by a term, which will be dependent 

on the order of the system. There could be probably say n factorial term coming in there. 

Then what we could have is that we will have associated higher derivative term. What is 

basically done in most of the time, when you look at higher order accurate system, you 

are basically talking about this term. 
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You expect that if this exponent is high, delta x being small, the contribution will be 

small, but the essential point remains. What we need to look at is basically the product of 



the two. It may so happen that I have n equal to 6, then this is ok, then I am looking at 

this. But, I can derive another scheme, where I would have a term here, which is instead 

of 5, it becomes 2. But then, the associated term there would become the third derivative. 

For that particular physical problem that third derivative could be much lower than this 

quantity. 

There is no guarantee that higher the order of this term, lower is the magnitude. In fact, 

in most of the physical system, it happens the other way. If you look at the higher order 

derivatives, they also carry higher amplitude. This you can very clearly understand if you 

look at a term like this. If I write its Fourier representation, then I would be writing like 

this. 

If I try to figure out its nth derivative, then what I am going to get would be nothing but i 

k raise to the power n and U of K e to the power i K x dk. You can see, higher the n, you 

are going to get higher contribution coming from higher wave numbers. So, this is quite 

easily understood that this root of characterizing schemes by order of the term in terms of 

the grid spacing is erroneous. 

What instead one should look at is representation in the spectral plane. If we neglect term 

then see it is negligible or not, if it is negligible, you are done. We are going to take that 

kind of an approach. What we see is that many times you could derive schemes, which 

are formally lower order, but they are truly higher order from the prospective of its 

behavior in the spectral plane. 
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Now, let us explore this form some simple example. For example, we are interested in 

discretizing the first derivative term that is important in many physical systems, so let us 

begin with a first derivative. Suppose we perform a second order central different 

schemes that is given by equation 1 here, you can see that it is related to its neighboring 

point i plus 1 j minus i minus 1 j are divided by 2h. The highest order truncation error 

term is proportional to h square by 3 factorial. This is the third derivative and rest of it is 

order of 4 and above. 

For the same way, we can also obtain a fourth order scheme that would involve more 

number of points. The essential point you notice is migrating from a second order 

scheme to a fourth order scheme, your stencil size becomes bigger. 

For example, equation 1 involves 3 points, equation 2 involves 5 points. If you look at 

the corresponding sixth order system, it actually involves 7 points. This is the essential 

feature of explicit scheme; you want to go higher order, your stencil size increases. We 

will talk about why this may not be always good to go for higher and higher order 

schemes. 
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Now, if I want to view these central schemes in k-plane, then what I can do is, I can 

represent a function f of x and t  in this hybrid manner, retain the time dependence as size 

it is, introduce k instead of x and then we perform this integral. 

If we use a uniform grade, then what we usually do is we represent the second derivative 

like this; that we have just now seen. If we now substitute 4 in equation 5, noticing that x 

is equal to m times delta x, then I would get the Fourier amplitude retained as it is. In the 

phase, I will write e to the power ik m plus 1 delta x minus e to the power ik m minus 1 

delta x. You notice that e to the power ik x is nothing but e to the power ik m delta x. 
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So, what happens as a consequence? We get an expression for k equivalent. Let me 

explain what this k equivalent is, if I represent u of x and t in terms of U of k and t e to 

the power ikx dk, then del u del x can be very easily written as i k U e to the power ikx 

dk. So, this is your exact representation. 

What we just now seen, numerically what we have got? Numerically, we got U of K, 

written as it is. We had obtained e to the power ik delta x minus e to the power minus ik 

delta x by 2 h. Then, we had e to the power ikx that was m delta x that is what we say 

and that is our x and dk. So, what happens here, this is your numerical representation. 

What you are noticing is that in getting the exact representation what you did? You had 

the Fourier amplitude; you just simply multiplied by ik to get the derivative. So, if I look 

at this, I could write this equation also in terms of U of k as it is. This quantity that we 

have here, let me write it as ik equivalent and then we have e to the power ikx dk. 

So, what happens? You see, doing the numerical operation is equivalent to replacing ik 

by ik equivalent. What is this ik equivalent? The ik equivalent is this quantity. What is 

this 2i sine k delta x by 2 h(Refer Slide Time: 25:37). So that I will get as equal to i sine 

k delta x divided by now mixing up, so instead of h let me write this as delta x, so I am 

going to get this as equal to ik delta x by delta x. 



What happens is then you can get rid of this, then this is an expression that we have 

derived it for CD2 scheme. So, what we are going to write here as k equivalent by k for 

this CD2 scheme is going to be sine k delta x by k delta x. 
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We can carry on with this exercise for CD4 and CD6 scheme. What we notice is that we 

can get some expression for k equivalent by k for CD6 scheme, given by sine 3 k delta 

etcetera, which is given by your equation 8. So, we are collecting expressions for this in 

the k plane. 



Now, let me tell you about a method that was developed here, few years ago, where we 

actually wanted to develop in 9 points schemes. We want to explore a 9 points scheme, 

but what we wanted to do was we wanted to optimize the scheme. So that the error of 

this 9 point scheme is much lower than many explicit schemes. 

Basically, what you do is what I have written down in this equation A. I will write it as 

dul dx, it would be a naught by 2 h. You can see the terms appear pair wise. For 

example, l plus 1 and l minus 1 are coupled together, the same way l plus 2 and l minus 2 

terms coupled here. You can see without the presence of u l we have 9 points here. 
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Now, how does this scheme behave or how we go ahead and do it; that is what we are 

going to see. We have written down those expressions in the physical plane. Now, what 

we could do is on the left hand side we have du dx, on the right hand side we have those 

9 points. So, we can write down the Taylor series and match term by term. 
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When we do that we are going to get various odd derivative terms, even derivative terms 

will all becomes 0, why? Because, you can see that the way this terms appear pair wise 

with a minus sign in between, so if you do a Taylor series this will only be written - the 

odd derivatives, all even derivatives terms drop out. Then, you successively equate the 

odd derivatives - all kinds of derivatives on the left and right hand side, write everything 

in terms of one of the parameter. 
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Here, we have used a naught as the parameter. Matching the Taylor series, we get 

expression for b naught, d naught and e naught in terms of the parameter a naught. 

Now, what we want to do is as we have seen here, the first derivative is given in terms of 

ik U for the exact quantity. For the numerical quantity, it is ik equivalent U (Refer Slide 

Time: 29:58). So, the error would be difference of the two. That is what we have written 

in this equation C. If you look at equation C, the error is the difference between exact 

and numerical estimate. 
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Now, what you could is we have the expression here; we can use that in the expression 

for the derivative that we have written there. In the previous slide, what we can see here 

is given in this equation. So what we could do is, basically we could substitute the 

Fourier-Laplace series and we will get this expression that we have indicated here. 

Now, the problem is set, you have the expression in c that is going to be a function of 

what? Only a naught. What we did was optimize this error as a function of a naught. We 

have done two things; we have taken U of k equal to 1 that is true for delta function 

excitation that is the most conservative estimate one can get. The other thing is we did 

not go the full limit from 0 to pi; instead we have taken a limit, which is slightly lower 

than pi. In performing this optimization in equation C, we end up getting a value of a 

naught. 
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We have now introduced some schemes here, they are essentially plotted here. What you 

are seeing is a host of method. The purple color is the CD2 method and that gives you 

that k equivalent by k. It is the performance parameter; ideally you wanted it to be equal 

to 1. What we are noticing here that CD2 scheme falls off from the ideal limit for a very 

small value of k h itself. 

What is kh? kh is nothing but non dimensional k. k is a wave number, its dimension is 1 

over length. h is delta x, which has a dimension of length. So, kh is non-dimensional 

length that we have shown it in a limit of 0 to pi. 

Now, once you notice that we have shown here the CD2 scheme, CD4 scheme is shown 

by the green line, which is shown here. UD3 is a third order upwind scheme, which we 

are going to subsequently define, but please take a note at this SS scheme that we just 

now obtained as a optimization exercise. You can see its performance; it is a 9 point 

formula, but what happened, in getting those conditions for Taylor series, we actually 

have matched up to 6 order. 

Basically, it is a 9 point, but it is sixth order scheme, because that is how we match the 

Taylor series, because we kept a naught floating. However, this k equivalent by k we 

have plotted here against kh. This performance parameter is better if you would have 

taken a CD8 scheme, because that is what we want to do. Because, you have taken a 9 



point and what you really want is a benefit that is more than that you could get with a 

CD8 scheme. That is what we mention that you should not focus your attention in the 

physical plane; instead you should look at in the spectral plane. That is what we are 

seeing, in the k plane this nominal sixth order scheme performs better than an eighth 

order scheme and this is basically an explicit scheme. 

I have purposely drawn another line here, which is shown here by this black line. This is 

an implicit scheme that should motivate us to look for them, as it appears here that this 

implicit scheme is far more accurate than this explicit scheme. We are going to talk 

about it as we go along. 
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Now, if I try to see its usage for all this derivative operation, we want to compute a real 

flow at high Reynolds number. If we use the central scheme, it may not work, because 

what happens is the property - combined Properties of the space time discretization will 

show that such central schemes are susceptible to very high wave number error. You 

need to stabilize your numerical method against those high wave number errors. 

One of the ways for utilizing upwind scheme is to introduce numerical dissipation that 

prevents numerical instability. This is the motivation for abandoning explicit scheme; 

instead going for upwind scheme. Explicit central scheme will be abandoned in favor of 

explicit upwind scheme. 



We have to be careful, because we have already seen in the derivation of the error 

revolution equation that in our zeal. If we want to make the method stable, we can also 

introduce error. So, that is what we have to be careful. Even stable algorithm creates 

error, so we will have to worry about it. That is why we have said very clearly that we 

need numerical stable algorithm. 

So, taking upwind scheme is an absolute must, we have to be rather careful in adding just 

the right amount of dissipation, which will take away those high wave number errors, 

while it should not tamper with the physical nature of the problem. That is what we want 

to make a comment here. We do not want to make the system over stable that is 

something we must be careful. 
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What does upwinding does? Again, let us try to explore it with the help of all model 

equation that convection equation that we have shown here, del u del t plus c into del u 

del x. 

Now, let us take one of the simplest possible upwind schemes. You have noticed that all 

central schemes are even ordered. We have looked out the CD2, CD4, CD6 etcetera, 

where the stencils were symmetric and we always ended up having even ordered scheme. 

So, if we look at the first order scheme then what happens? 
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Let me explain this somewhat better, because we are looking at a problem where our 

governing equation tells us that the signal is propagating from left to right. Because, c is 

positive, if I give some kind of an initial condition in the x t plane and if I give some kind 

of an initial solution like this, what happens with the passage of time? This condition will 

move to the right. 

At a later time, I might see that this solution has moved here. This is the property of this 

equation that it does not amplify or dissipate; it also does not disperse. So, if I have a 

packet like this, the packet is retained as it is. 

What happens if I try to solve equation like this using first sort upwinding scheme? That 

is what you are noticing here. I have a purposely looked at the del f del x at the m th 

node, so where is the information coming from, it is going from left to right. So, what I 

should do is I should write an expression which should involve the m th node with the m 

minus one th node. This is what we are going to do; we have an expression for f that we 

have seen in terms of Fourier-Laplace series; that is what we have done in equation 9. 

We just now seen that if we follow the physical nature while discretizing through the 

equation 9 we were actually following the correct trend, because information is 

propagating from m minus 1 th point to the n th point and that is precisely what we need 

to do. 



Again, using the Fourier-Laplace series, what we can see that we can work out the k 

equivalent by k. You can work it out, what you would notice? It is a real part, which 

looks exactly like we had obtained for the CD2 scheme. In addition, you have an 

imaginary part. The imaginary part actually is the numerical dissipation that we have 

added to this scheme. 
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Why I am saying numerical dissipation? Which we can show it subsequently, but what 

we can do is, basically having obtain this scheme here del f del x. So, what we could do 

is basically, if I am writing this, I will be writing here u, we are looking that m th node. 

So, I will be writing here like this, um n by delta t, so this is my Euler time integration 

for the time derivative. Then, I will be adding C U m n minus, now we are doing first 

order up wending, so that is why I am writing it like this. 

So, I can write down the Fourier-Laplace transform. Then, what we are going to do is we 

are going to write; if you remember we have introduce that as u of x m t n, we have 

written it like U of k t of n, we will write it as e to the power ik xm dk. That is our 

Fourier-Laplace transform expression for the variable, so I can substitute it there. 

What we are going to get is, basically from here I will get U of k t n plus 1, from here I 

will get U of k t of n and this is divided by delta t and c. What am I going to get here? 

What I have just now written here? 

This is the expression that is given, so what we are going to get? So, this whole thing that 

we are writing, it comes under the integral sign. We have performing the integral over all 

k. So here, I am going to get c by delta x and what do I get here? It will be1 minus e to 

the power minus ik delta x into U of k tn. 



This whole thing I am going to multiply with respect to this (Refer Slide Time: 43:21). 

So that is what we have written here, it has been multiplied by e to the power ikx dk. 

Since, this whole thing is equal to 0 the integrant must be 0. What we have basically 

done say that the integrant itself must be equal to 0 and that is what we are going to write 

- equal to 0. 
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Now, if I divide this equation by U of k t n, then this term will give me G that is the 

definition of G. Remember, G of k t n is nothing but U of k t n plus 1 by U of k of t n. 

So, if I divide this equation by U of K t n, then what we are going to get is the following. 

We are going to get here G minus 1, if I take this what do I get? c delta t by delta x is our 

CFL number, so that is going to be our CFL number N c. This is well known CFL 

number, which we have talked about many times before, so we are not surprised. In 

addition, we are getting here 1 minus e to the power minus ik delta x equal to 0. So, you 

have an expression for G. 
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What we do is having obtained the expression for G, we can plot it. This plot is a very 

fascinating plot, because it says very clearly that you have a vertical line corresponding 

to N c equal to 1. To the right of that line the method is unstable; everywhere G is greater 

than 1. So, there is absolutely no mystery here, if you are adopting this method never try 

the value of N c greater than 1. If you do take N c less than 1, then you can see that for 

different wave number they are going to be attenuated by different amount. Higher the 

value of kh, higher is the attenuation. 

Whereas, if you take N c exactly equal to 1 what you getting is G is equal to 1 

everywhere and that is your exact solution. So, what we have learned that upwinding by 

itself is not bad, provided you do it physically. Here, doing it physically is equivalent to 

taking N c equal to 1. 

You understand that there is nothing wrong with upwinding per say, but if you overdo it 

say instead of taking N c; N c it means what it is a measure of c times delta t, so delta t it 

basically tells you a time step that you are taking. 

So, if you take a time step, which is too small, then you do not get generally more 

accuracy. Here, it shows very clearly to get the maximum accuracy, you will have to take 

delta t is equal to delta x by c. That means what?  Every time step your solution is 

traveling by 1 node and that is the definition of phase speed c. 



You can very clearly appreciate what has been achieved here; you do get exact solution 

for N c equal to 1. If you take more than 1, you are unstable, if you are less than 1, it is 

stable, but it will be erroneous. 
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Then, we can plot this c n by c. See basically what we have written down here, G as 

given here. So, this could be written down also in terms of like a modulus of G; that is 

what we plotted in the previous slide. Then, we can also get it phase, which I write as 

beta j. 



What is beta j? beta j is given by tan beta j, would be nothing but G is complex. We get 

G imaginary by G imaginary by G real, so I got this. What does it mean, whenever I am 

numerically integrating, I am amplifying or attenuating by mod G and the solution is 

shifting its phase that is what it is doing; it is moving to the right. So, every time step, I 

need its phase to shift and that numerical phase shift is given in terms of what you have 

gotten the value of G as. 
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Now, once you have gotten the value of G there, inconsequence you have gotten the 

value of beta j, we have shown it already and that beta of j is nothing but equal to - can 

be related to C N by C. So, C N is the numerical phase speed that we can show. C N by 

C will be beta j by omega times delta t. 

So, once you have obtained the beta j you can calculate numerical phase speed; they are 

all related. So, the basic task is to choose your numerical algorithm, obtain the value of 

G, collect its real and imaginary path and obtain C N by C. The same way, you can also 

get your V g N by C that should be equal to 1 by C delta t d beta j dk. This is what we 

have discussed when we are talking about hyperbolic equation. 

What you notice here, in this C N by C equal to plot also there is a beautiful thing. That 

is, for N c equal to 1 you have C N by C equal to 1. That is exactly what you want and 



that should be equal to 1. Numerical phase speed should be equal to the physical phase 

speed. 

(Refer Slide Time: 50:48) 

 

Now, let us see rather interesting thing that even for a value of N c equal to half you get 

the same quantity, but we have seen in the slide that there you will have G property that 

is not desirable. We notice that the same thing, you can look at in terms of the group 

velocity also. The V g N is exactly equal to C. What it should be for N c equal to 1? So, 

this is essentially the idea by which we can really work out. 

Now, let us look at the consequence of this UD1 scheme. I told you that k equivalent has 

a real part and imaginary part, so that is what we have written down here in equation 11. 

We have shown it, the real part gives raise to this, which is like your CD2 scheme that 

we have noticed before. This imaginary part actually gives you an added dissipation. 

Why because, on the left hand side I have this term. Now, if I have some quantity, the 

positive quantity with a negative sign I put it on this side, then I am going to get this term 

that is what a positive quantity k i square times f, this actually plays this role. 

If you have the Fourier-Laplace transform presentation of a function, you do take the two 

derivatives twice and then you end up by getting an expression of that kind; minus k 

square u of k. So, this is exactly what has been achieved. 



It is all over interesting thing to get a solution which is numerically correct. We added up 

some numerical dissipation, which was not there, but we have chosen in such a way that 

delta t and delta x, we have kept N c equal to 1 and we have achieved a perfect solution. 
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Basically, once we have made this case for first order upwinding case, what we have 

shown? If I look at the first order upwinding case, the first order upwinding case is 

equivalent to doing this here. This is your CD2 scheme on the left hand side and to that 

you have added a second derivative term that is your first order unwinding, so we can 

generalize it. 

For example, we generalize it to a third order upwind scheme. Third order upwind 

scheme will be, I will take the derivative here, a fourth central difference scheme and to 

that I will add a fourth derivative that is your third order upwind scheme. You can 

successively generate fifth order, seventh order scheme, so on and so forth. 

Where we have already seen, what del of del x CD4 expression is. I have shown you 

what this fourth derivative expression is in terms of that. If you substitute all of that 

together, you have del u del x by third order upwind scheme, it is given by equation 15. 

So, this has been done for a case where the signal is propagating from left to right. 



Having done, we have the Fourier-Laplace series and we can substitute it. We will get 

the real part of k equivalent by k for UD3; it will be exactly same as CD4. In addition, 

what we will get? An imaginary part and that is what is shown in equation 16. 
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So, one can work it out, one can see that third order upwinding is equivalent to adding 

this term. This is what you get to see, if you plot all the k imaginary by k plot against kh. 

If you look at all central schemes, they all fall along 0 lines; these are what you get for 

all central schemes. Whereas, this brown line is for first upwind scheme and this is your 

third upwind scheme. 

What you notice interestingly enough that there is a qualitative difference. Third order 

upwind scheme starts to become active at relatively higher rate number, whereas first 

order upwind scheme become active right from the beginning. 
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What we could do is, we can try to rationalize what upwinding is doing? Upwinding; let 

us say we look at some kind of an evaluation equation like this. Then we can think of L 

of u includes all the spatial derivatives and we can represent it. Then what we could do is 

we can write down the spatially discretize scheme like equation 18. 

You see there are all kinds of terms involved here, k goes from 0 to N; N determine by 

the order of the scheme, we have seen. If we take a second order scheme, we need 3 

points; if we take fourth order scheme, we need 5 points; if we need sixth order scheme, 

we need 7 points. So, N is determined by the order. What we have done? We have done a 

similar analysis for space term dependent equation and we can work it out in that 

particular fashion. 

Basically, the discrete equation what we really need should be stable, but what we find 

that central schemes are neutrally stable, because just now we have seen that k equivalent 

by k imaginary 0. So, it does not add any dissipation, it is neutrally stable, but if there are 

numerically instabilities at high wave number due to some high k source then we need to 

suppress that. 
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What happens in case of a central scheme? You always see oscillations with a wave 

length with 2 delta x. This is the highest wave number that you can resolve in that grid. If 

I have a grid points like this, this is the smallest wave length wave that I can represent 

(Refer Slide Time: 56:52). So, that is what we are seeing, so the oscillation is related to 2 

delta x. 
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Now, if I write down the corresponding error equation, which is not very trivial, to 

control this oscillation at 2delta x what we really understand is that the central schemes 

are insensitive to the node point we are looking at. 
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However, if I do upwinding link, I notice that the schemes as we have seen here, if I am 

looking at the n th point, there is a term here, which involves the n th point itself, which 

is not there in central schemes. 
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Whenever you do upwinding you get this term, when you get this term, you actually can 

write down the error equation, which will involve this term. So that means, the error at 

the l th node is coupled to the error at the l th point itself. If suppose p is 0, I could 

integrate it and I can show that e of l goes as e to the power alpha t minus exponent. If 

alpha is positive, then this is going to show that the error is going to decay with time. So, 

that is the whole key to stabilizing schemes. You need to add a term in such a way that it 

provides this minus alpha of this kind. This is what exactly you decide by this. 
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So, I suppose you can get some of this plots as it is shown here, numerical amplification 

factor for some of the schemes CD2, CD4, UD3, this SS schemes that we have talked 

about. Same way, we can work out the expression for C N by C. We can work out the 

expression for V g N by c. So, this is your phase speed representation. Here, you have 

the group velocity representation. What you notice is, certain properties which we will be 

exploring once again, when we talk about compact scheme later time. 
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So, I think, I will just stop at this point. We will get back to a framework where we will 

be talking about compact schemes, which are essentially implicit schemes, which 

perform some of this task that we have set up today in a better manner; that is what we 

will be taken up from next lecture onwards. 


