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In today’s lecture number 25, we start our discussion on alternating direction implicit 

method. We talk about a general elliptic equation, which could represent either the 

Laplace's equation or the Poisson equation or Helmholtz equation. 

 (Refer Slide Time: 00:22) 

 

We notice that it requires discretizing the Laplacian operator and we will identify that 

this Laplacian operator is best discretized by casting it in a self-adjoint form. Once we 

have this discrete form of general elliptic equation, we show that the self-adjoint from 

actually leads us to a diagonal e dominant matrix. We also notice that this ADI method 

actually utilizes the analytic solutions of tri-diagonal linear algebraic equation; that is 

what we actually do. In a two-dimensional problem, we split it in additive fashion and in 

each step of the ADI method, we go along one particular direction and since the 



directions are alternated; that is the reason we have called this method as alternating 

direction implicit method. 

As we discussed, it is about error propagation properties and we find out that this in ADI 

method. What we actually obtain is, introduction of acceleration parameters to further 

accelerate this alternating direction approach. These acceleration parameters are of two 

kinds: one set was given by Peaceman and Rachford and the other set was given by 

Wachspress and these acceleration parameters are found out with the help of the pair of 

theorems due to Gerschgorin. That is what we are going to talk about today. 
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Get back to our discussion on ADI method. See, we make this observation that the ADI 

method is similar in spirit to line iteration method. We have seen line iteration method is 

basically the method of choice till 1950s, because they were showing a progression in 

terms of computational efficiency, speed and benefits; so people were doing line 

iteration. 

However, it was also noted that the strategy by which we go along in choosing these 

lines are favored boundary conditions from one side or the other. That is why this idea 

came upon that if we keep switching this direction of solution then what will happen is, 

we could in an unbiased manner bring the boundary information from all sides. That is 

desirable for a boundary value problem, so that was the whole idea. 



The second thing is of course, I noted to you that most of the time that elliptic 

differential equation - partial differential equation - that we solved involves Laplacian 

operator or the bi-harmonic operator. Wherever they appear, they of course, appear as a 

power of 2. That is the reason that you get complex conjugate as characteristics. What 

you note that representing this Laplacian or the bi-harmonic operator, you like to do what 

I have noted down here as a self-adjoint form; we like to have something in a particular 

fashion that gives certain numerical properties. 
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What are these numerical properties? Some of which we discussed in the last class itself, 

that we want the associated linear algebraic equation of the following form and we 

should have some nice property for this matrix A and one of the nicest property that you 

can think of is the matrix should be symmetric; it would be positive definite, that is what 

we talked about. 
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To at least achieve symmetry, this form of the PDE is very desirable because for 

example, let us investigate one of the points - constituent point I have written here, see 

what we have done here? We have written it down in a form like this (Refer Slide Time: 

05:32); this is what we always would like to do. 

So, if I have the Laplacian operator of this kind, I would rather like to write it in this 

form. This is something like your self-adjoint form; we talking about here. See, this A is 

like your f and C is like your g, why do we do that? Its very operant when you start 

looking at the discretization of that term, this term here has been discretized in this 

manner. 

How it has been discretized? Let us take a look. Let us say, this is one of the coordinate 

direction; this is the other one. Let us look at a segment of a point, so this is my i j th 

point that is where we want to discretize the term. Now, what we try to do is, we try to 

have a system of discretized equation which remains unbiased. So, if I am trying to 

discretize in the x direction, I should not have any asymmetric coefficient in the discrete 

form; that is what we mean by unbiased nature. 

How do I do that? We have already seen that if I do a kind of a central differencing, here 

in this part this del u del x has been written down in this form. What has been done? We 

have taken the point half a node to the left and half a node to the right divided by the 



spacing between these two nodes; that is why this is your equivalent CD2 formulation 

isn't it; see, we have taken half a node to the left hand to the right. 

Of course, we are focusing our attention on the i j th node, so we have kept a here at the i 

j th node. Basically, what we have done in the first step? We have invoked this two 

points, so this is my i th node and this my j th line. In the first step, I am discretizing del 

u del x by taking this point and that point; that is what we have done. 

Well, you can proceed further. Now, this is the function and that you are differentiating, 

again you do the same thing. Let me take this first set of point A ij times u i plus half j. If 

I do that then, what I am going to do? I am going to take this one shifted half to the right 

that is why I have written A i plus half j and then that is multiplied with this quantity u i 

plus half j that has to be differentiated and if I take a half a point shifted to the right that 

will give us u i plus 1 and if I take half a point to the left that will give me u ij. 

This part is coming from the first product and the next part comes from the second 

product. Now, this A is now shifted half a point to the left, so that is why we have 

written A i minus half j and of course, u i minus half j if I differentiate, I will get half a 

point to the right, so that will be u ij and half a point to the left would give me u i minus 

1 j. Of course, there was 1 delta x and this differentiation would bring in another delta x, 

so I have the whole thing divided by delta x square. 

So, this is the point but we write it like this (Refer Slide Time: 09:45). You can very 

clearly notice that discretization of this term invokes the unknown at three points, which 

are those: the central point itself u ij then, one point to the right u i plus 1 j and this is 

this. 



(Refer Slide Time: 10:22) 

 

Now, what you notice though that there is the form appearing from this discretization; 

this is what we have try to explore here. Let us take for the sake of simplification of 

notation describe h as delta x and k as delta y then, the quantity that we were discretizing 

was del x of A del u del x. If I multiply that quantity by h k and I purposely multiplied it 

with the minus sign, so that the diagonal term appears with a plus sign and the half 

diagonal terms appear with a negative sign - you recall - we enunciated some property of 

A matrix property to be property A we called and that was desired that your diagonal 

elements are positive half diagonal elements are negative. Then, they would also have 

the diagonal dominance property to get a good iterative solution strategy. 

So, if I write it like this; so if I write it there at m nth node, I get this structure and it is 

very easy for you to clearly see the tri-diagonal matrix appearing here. From the first 

term which I called as HU; so HU here is written in this form. 

Basically, we keep writing it for different values of m starting from the first interior 

point. So, if I look at the boundary point as u 0 n then, I will start this discretization from 

u1n and when I do that, I will see u1n would be the my beginning starting post and that 

would have a point u 2n and u 0n; u 0n is the boundary point, so that would not stay on 

this side; that goes to the right hand side, this is a known quantity. 



When I write in terms of the unknown then, the first line gives me two entries that will 

have the entry that would be here 2b mn and this quantity would be on the super diagonal 

that is the minus a mn. Now, of course, once you move away from the near boundary 

point you start having all these three points. For example, 0.2 onwards you will get 1, 2 

and 3 and then, you start getting this regular tri-diagonal structure, so this is what it is. 

Now, what is this a mn? Remember, this was divided by h square; so when I multiply by 

h k that would give me a factor of k by h. So, I have this entries given as a constant 

multiplier k by h in all three and what you also notice a particular nice property that the 

half diagonal terms, if I take their magnitude and add it up that is what gives me the 

diagonal quantity, so 2b mn is nothing but, equal to a mn plus c mn. 

Why do we do that? Well, you recall that was one of our requirements for diagonal 

dominance. We wanted that at the most the diagonal term in magnitude should balance 

the sum of all the half diagonal term and that is what is guaranteed by this kind of 

discretization, because this central entry is always balance by this. Where do you get 

strict inequality? You do get the strict inequality on the first row and the last row. So, by 

doing this kind of discretization, what you are ensuring is that you would have a very 

nice diagonal dominance property of the system. 

Now, you look at the other term that we had something like this, there we had written 

like del y into c del u del y again, you multiply by minus h k and you will get in terms of 

this coefficients alpha, betas and gammas and they also have that same kind of property. 

Now, you notice that here the constant multipliers are h by k; that same property is 

shared here the diagonal entry in magnitude is some of the magnitude of the half 

diagonal entries. 
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So, if you now go back and take a look at the equation 60, we have just now talked about 

discretization of this part. In addition we all have a term like this G into u where do we 

get it, those of you are familiar with little bit of electrostatics; you would know that is the 

kind of term you get in Helmholtz equation. 

You would get this kind of term there, so that will be like if we are discretizing at the 

point ij so this will be just simply Gij times u ij and this is you have some kind of a 

forcing that you get in  Poisson equation. Poisson equation you get del square f equal to 

G or something, so that right hand side the function S is that term that accounts for this. 

So, in a generic sense this equation 60 that we have in front of us is a potpourri of 

everything. We have the Helmholtz equation as a special case; Poisson equation is a 

special case, you can also treat it has a Laplace’s equation. Laplace’s equation of course, 

G and S will be equal to 0, so this is what we are talking about. 

Now, having discretized those second derivative terms in the self-adjoint form we get 

this as the finite difference analog. We had H times U giving us the first set of term del 

del x of a del U del x term. So that is the H it is their then, this is the second term and the 

term I told you which makes it a keen to the Helmholtz equation G times U adds on to 

what I have written there is a capital sigma K H times G omega, I have multiplied the 

whole equation by K H that is what we have done. 



If you recall, when I wrote in the previous slide I did purposely multiplied all the terms 

by H and K, so that certain symmetric nature showed up. What happens is that sigma U 

that we are writing here is basically H K times G and forcing term on the right hand side 

will be H K times S evaluated at the point in question m n. 

Now, once I write this discrete equation 64; you can place where each of this term go. 

For example the G term, where does it go? It goes to the diagonal because we are 

looking at the m nth point that goes along the diagonal. So, sigma U would actually add 

on to the diagonal entry; so that would actually help the diagonal dominance property. If 

I have without the G term already we have shown that diagonal dominance property is 

there then, in addition to that if I add this G term this will strengthen the diagonal 

dominance property and we have already noted that such diagonal dominance adds in 

convergence. 

Let us make our job little more-tougher, so let us drop the G term; G term is easy to 

make - I mean - it automatically makes your life easier. Let us try to investigate a case, 

where is somewhat little more challenging, we drop that G term and instead we start 

looking at this equation 65. Basically it is nothing but, an attempt to solve a equivalent 

Poisson equation we are solving a Poisson equation here that is given by 65. 

This is the basic thing that we have done so what is new, apart from the discretization 

what is new? Well, this is where the people working in the area ADI came up with the 

idea that we could split this equation H plus V operating on U to provide that right hand 

side K in 2 steps. 
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What we do actually, is given in equation 66a and 66b. In the first half step I add DU 

term on both sides then what happens on the left hand side I have H plus D into U and 

right hand side K was of course, there VU has been putted on the right hand side but, 

since I have added a plus D U, I again here add a plus D U here note the minus sign 

together will make it. 

We have just simply added the same term on both sides. What is the structure of H plus 

D matrix? It is still a tri-diagonal matrix, H matrix itself had some bare bone diagonal 

dominance property to that we are adding something as D. So, if D and E happens to be 

diagonal matrix then we are adding to a diagonal dominance then what we are basically 

talking about, 66a is what? It is a line iterative method, isn’t it? 

What is your H operation? Is this derivative; basically, we are looking at this equation 

now (Refer Slide Time: 21:14) this is what we are trying to solve. From here in a discrete 

form I get HU and from here we get discrete form VU, so that is what we have written 

there 65 is H plus VU. 

Now, what I am suggesting to you that put this term in the right hand side. So, what will 

happen? Then I will get this, so this itself is a going to give me a tri-diagonal form so to 

that I am adding it entry which announces the diagonal dominance on the left hand side. 
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What we end up doing actually then we are basically writing it exactly like what I have 

written there in 66a. What happens is I can now solve that 66a along the j equal to 

constant lines that is what will amount to. Basically, what we are suggesting that we will 

be solving line by line in this fashion and when I solve that; that would be like solving 

HU is equal to K minus VU that is what we do in line iterative method, isn’t it? 

We put the y derivative on the right hand side and we keep solving along these lines 

horizontal lines and much that is what our line iterative method has been design to do. 
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Now, what we are doing? Making that line iterative method little stronger and that is 

why we are adding this d matrix, so that is what we are doing in this thing. Now, what 

happens is of course, if H matrix was little hyper sensitive that it had not a very well 

condition property; by adding the D, we have ensured that we would not have problem in 

solving this equation. So, because H plus D would be a well condition matrix; it can be 

inverted in a mathematical sense and computational sense, so that is why I am calling it 

as non-singular. That is the first step, I keep solving it like this, and I go from line to line 

like this start it up. 

Now, in the next half step what I do is, I change my direction. Now, I would be solving it 

in this fashion that is what that second equation implies that V plus E into U is this. So, it 

basically the same thing, we are doing - treating. Now, what we could do is, we could put 

some kind of iteration index on this so that is what I have done. 

What I have done is written it down here; what Peaceman and Rachford suggested that 

you purposely take this D and E matrix as strictly diagonal matrix. How do you do that? 

Well, you just define D and E is equal to some acceleration parameter, we will talk about 

this acceleration parameter shortly, which has given the notation here rho n times the 

identity matrix then, I say we are actually doing this. 

So, if I have a solution at the k th level solving 66a is equivalent to solving this. So, I get 

a half step solution which I am calling it as k plus half. Having obtain that k plus half 

solution then, I go to the next half cycle that is the my forcing term and I solved this 

equation and that completes a full cycle. 

First, I do a vertical sweep followed by a horizontal sweep and that constitute one 

operation of ADI method. Why did we do that? Well, that is what I have been suggesting 

to you that look the tri-diagonal matrix plays a very central role in computing and these 

two matrices H plus rho KI and V plus rho K I they are both tri-diagonal matrices. 

Now, if we can choose this rho K with lot of care then, we could not only ensure 

diagonal dominance; we can also control error better and that is what we are going to 

study now. How the choice of this D and E matrix actually influences the success of the 

method. 
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So, if I have chosen those half steps and I have rewritten those equations but, now I am 

saying look, I have performed an infinite number of such operations. Once, I have done 

that many operations then, I do not write it K plus half K everything is at the 

convergence they have become indistinguishable what you have on the left hand side and 

right hand side. So, this is what we get 68a and 68b are the status of the system at 

convergence. 
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Now, I can denote an error vector which I have shown here for the K plus half step that 

will be the convert solution minus the current solution. If I do that then, what I can do is I 

can subtract these two equations from my commutative equations in 67 and subtraction 

would give me this equation, H plus rho K I into E and this (Refer Slide Time: 27:46). 

You can see in both the equations K is common so as far as error is concerned the K 

cancels out. 

The error evolution from k th step to k plus half step is entirely determined by the 

structure of H and V matrix and by the way, we have added this acceleration parameter 

rho K. In the second half, we go from K plus half and we arrive at K plus 1 step so that is 

what my error is. So, if I combine the both the steps then, what do I get e k plus half 

would be V plus rho K I inverse operating on this and there is this minus sign setting up 

front operating on e k plus half but, from the first equation, I can get e k plus half is 

nothing but, minus of H plus rho k I inverse into this, so that is precisely what we have 

done. 

What we seen that one step of ADI involves the error to migrate from e k to e k plus 1 

through this matrix T of k which I have called it has the error reduction matrix. You can 

very clearly see what this T of k is; T of k is this whole product set of these four 

matrices. Please do understand that when I write this inverse it is not such a great 

difficult task to undertake because these are tri-diagonal matrix; we have exact solution 

by Thomas algorithm, so that is not a question that we should be bothered about. 

So, once I see the error at successive steps are related by the error reduction matrix then, 

I can form a kind of a norm for measuring them. So, that is what is written here that the 

error at the k plus 1 th level is bounded by what was my error of the previous step times 

the norm of the error reduction matrix. 
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There are various ways of defining the norm but, we have already seen that we do it in 

terms of the spectral radius. We have done that but, none the less will still figure out 

certain interesting properties of this. Please take a look at the previous slide that in the 

definition of this T matrix, the V matrix appears in the beginning and in the end and H 

matrices are sitting in the middle. 
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So that is little unwieldy; that unwieldy structure can be rectified by performing a 

similarity transformation. One of the properties of similarity transformation is that if I 



have a matrix, I perform a similarity transformation Eigen values, Eigen vectors do not 

change. We have to take it from it, I am not going to say more than that. This is a well 

established result that if I perform a similarity transformation, how do I perform a 

similarity transformation? I take the original matrix T that we have here and then, I pre 

multiply by the matrix and post multiply by its inverse, so that is what we have done. We 

have actually done here that V plus rho k I multiplying T and V plus rho k I inverse post 

multiplying that. 

Then, what happen? I can put in the expression for the T matrix shown in the braces and 

then, I get this. Now, actually what has happened? I have a sort of it ((there)) of product 

term first of which is totally dependent on H matrix; the second is dependent on V 

matrix. 

So, this T tilde matrix that we have obtained is determined in terms of this particular 

product form. Now, if I look at the tri-diagonal matrix with that property that we have 

discussed; we can show that the Eigen values of those matrices will be real. The entries 

are real plus those properties that we have enunciated will ensure that they will have real 

Eigen values. 

So, if I have Eigen values of H and V matrix as mu and nu then, I can see that the Eigen 

value of this T tilde matrix would be given by this; so instead of H, I write mu. So, this 

first factor is mu minus rho and this is inverse, so that will go in the denominator mu plus 

rho. The second factor will give me mu minus rho and this inverse will go down stairs to 

give me nu plus rho in the last expression. 

Why have we written like this? It is very clearly shown irrespective of whatever may be 

the value of mu and nu to be each of these products within the first bracket are 

guaranteed to be less than 1, can you see that? That whatever may be the value of mu and 

nu this factor as well as this factor is always less than 1. 

Can you see the tremendous benefits that we have derived out of this particular 

operation. Whatever may be the spectral radius of H and V matrix, they could be quite 

not so well behaved; they could be very close to 1, so that it will struggle like what we 

have seen. 



Even then these factors or each one of them is always going to be less than 1. Basically 

what does it imply? That is understood here that my error in successive iteration is 

moderated by their norm of the T matrix and that norm of the T matrix we have just now 

ensured is guaranteed to be less than 1, so this shows a nice convergent iteration. 
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So, in doing that what we need to do is of course, find out the Eigen values of H and V 

matrix and we have to also find out what this rho is, that acceleration parameter that we 



talked about. Now, look at the way that we have written down the linear algebraic 

equation that e k plus 1 is related to e k by the multiplication of T. 

Now, if I do l such iterations, so I go from e k to e k plus l then, I find it is nothing but, 

taking a product of this successive T matrices. This is where we also note that earlier also 

I had added a subscript with rho, here also I have added a subscript with rho here i it 

means that from on each iteration I could take this rho to be different. 

How do we choose it, we will come to that but, there it shows that we have added degree 

of freedom in choosing the acceleration parameter rho i. So such that the error after l th 

iteration is determined by the Eigen value of this product matrix of T. 

So, I would have T of rho 1, T of rho 2 and so on so forth up to T of l that is what this 

product operation is signifying. So, I call the Eigen values of that product in terms of 

lambda. Now, lambda is a function of those Eigen values of the constituent H and V 

matrix so mu and nu; they will look like this and they will also depend on the 

acceleration parameter rho i - I choose - so i go from 1 to l. 

So, if I look at the norm of the spectral radius of that lambda matrix that would be given 

here, let me call that as capital lambda matrix. So that would be nothing but, take this 

product form and look for its maximum value, when mu and nu take its successive 

values. How many values of mu and nu will get? That will be determined by the 

dimension of H and V matrix. If I have an H matrix which is dimension is m by n then, 

what do I get? I will at most get n distinct Eigen values, so that is precisely what we are 

doing. 

We are scanning through all those m and n Eigen values of mu and nu and trying to find 

out what is the maximum of it because, we know when we adopt this strategy eventually 

what matters is the spectral radius of this product matrix. 
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Now, let me a draw a diagram to tell you what we get out of this operation by this T 

matrix. See, what we have written down just now is that e k plus 1 is given by the T 

matrix, so this is a vector and this is operating on this. Now, what we found is that this 

itself in a non fashion gives me like mu minus rho i mu plus rho i and nu minus rho i and 

nu plus rho i. 
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Let us look at one of this factor, let me plot this. On this side you plot it as a function of 

rho and on this side I am plotting mu minus rho i by mu plus rho i. Now, if I choose rho i 



as 1 of the Eigen value of H matrix what will happen, the numerator would be equal to 0 

for that Eigen value. 

So, if I am choosing a value rho j equal to let us say, call that as u j then, what I am going 

to get for that combination so for different values of, well I think I should plotted mu 

here the whole spectrum of Eigen values that we are looking at. We are trying to find out 

what this factor does for different spectral component of this Eigen values. 

What happens is that value when that acceleration parameter one side with one of the 

Eigen value that is what this factor is 0. Anything that is less than this, will go like this 

(Refer Slide Time: 40:32). The facts that I could choose your acceleration parameter 

coincident with one of the Eigen value and emulates that component of the error because 

that is where this is 0, where do you get the maximum? See, if mu goes to infinity then of 

course, the value will such way to at the most 1 irrespective of whatever row you choose 

then, what we was finding out that this is the kind of (( )) that we get. 

So, all such choice of rho acceleration parameter we make actually, brackets the 

corresponding error component between 0 and 1 and that is exactly what we wanted, that 

is the whole idea of error reduction. What happens is, then if I have mu 1 to mu n what I 

could do is, I could keep choosing my rows as those Eigen values themselves. If I choose 

rho 1 equal to mu 1 then, I know on that iteration any error that is proportional to mu 1 

has been taken care of. 

So, this is the whole idea of looking at it and we are also being assured here by this 

expression that what happens is essentially is the spectral radius of this is what matters 

most and that is what we want to do but, think of the possibility that if you have taken 

say 500 point in the x direction 500 point in the y direction T. You have to calculate 500 

Eigen values in a for H matrix, 500 Eigen values for V matrix and will be doing this 

iteration. 

First time you will take mu 1 then, next you take mu 1 equal to rho 1 then mu 2 equal to 

rho 2 I mean rho 2 equal to mu 2 and so on so forth, but then you are expecting to 

annulate all the error component; you have to take the full cycle 500 such things and that 

is a luxury. 



For each step of solution method for elliptic equation, if you to have to take that many 

numbers of iteration to take care of one cycle then, you are in ((diastric)) you know, if I 

have to do that most of the computations will come to halt. What we try to do in our 

regular day today activity; we tried get it within 5 or 6 iterations, if it is not done then, 

we know we have a slow method we have to improve upon it. 
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What it actually tell, that even if I know all the Eigen values of H and V matrix it is not 

very practical to use all those informations up. What you are noticing that when I choose, 

say rho j equal to mu j I have whole set of range over which this is something like 0.2. 

So this range all the error component has been reduced by 80 percent in that step. What I 

could do is a choice of a selective such points would take care not only that particular 

point but also its neighborhood. So, I do not need to exhaust all the Eigen values 

themselves; I could take some selective values and that is what I must take care that 

practical estimate. 

How many such values we should take? How should we go about it? That is guided by 

this statement that we have the Eigen values whose ranges are given let us say, the mu 

ranges between a and b and nu ranges between alpha and beta. 
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Then what we would do is, we will try to find out a sensible number of such acceleration 

parameters lying between these bands and we will try to work it out. How do we do it? 

Well, we want to automate. So what we try to do is, we try to find out the minimum of a 

alpha here and call that as a bar and the maximum of b and beta that we call as b bar we 

can find out their ratio that is like something like your stiffness ratio. 

If you recall in the discrete equation, I had that form H by K, K by H so what you find, 

here also I am talking about how the problem is stiff in the x direction, how the problem 

is stiff in the y direction that is given by this Eigen value spectrum that is determined by 

a b and alpha and beta and the ratio of this global maximum and minimum that 

determines how fast it can be done. 

So, Peaceman and Rachford actually suggested that we do it like this. We take a 

sequence of n of those acceleration parameters indicated with a superscript p to indicated 

that due to Peaceman and Rachford, so that is given by this. What we are doing actually? 

You are taking n such acceleration parameters between a bar and b bar that exhaust the 

whole possibilities; a bar is the lowest value b bar is the highest value, so that is what 

you do. 

Well, there is a bit of mathematics that goes behind all this. How do you choose that n? 

There are couple of ways Varga and his colleagues have shown that if you know this 



ratio a bar by b bar that is c, then you should choose n in such a way that this inequality 

satisfies that root 2 minus 1 raise to the power 2N should be less than equal to c. There 

was another person Wachspress; he suggested alternative form and what we get is much 

higher rate of convergence by adopting this method. Now, what is it that remains to be 

settled? How do I find out those quantities given in the first line the minimum and 

maximum of an Eigen value without setting too much? 

(Refer Slide Time: 47:23) 

 

We have to compute and we cannot do much with trying to find out your Eigen value 

spectrum of a 500 by 500 matrix that is too much that it is a problem which may be 1000 

times more difficult than your original problem, so you do not want to do that. So, that is 

where there is couple of theorems due to Gerschgorin that comes very handy. This is 

very practical and very useful, let us use it. 



(Refer Slide Time: 48:10) 

 

What we have is, let us say all are making it same. So, I can write down all these 

quantities a 1 1 a 1 2 and so on so forth till a 1n and a n n (Refer Slide Time: 48:18). Let 

us have a full matrix like this. 

The first theorems says that you can find all the Eigen values, - every Eigen values - of 

this matrix A would lie in the union of circular disc and this circular disc are formed in 

the way that the center is located at the diagonal, if I have a ii so this is where the center 

would be located. 
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Basically, what we are talking about is, we are trying to find out the Eigen values of a. 

So, I will plot lambda imaginary and lambda real and what I would do? I will look at the 

ith entry of that and I will find out the center of that circle that is at a distance a ii from 

the origin and then, the radius of the disc that is formed that is given by this. So, this 

radius is nothing but the sum of the magnitude of all the up diagonal term in that row. 

(Refer Slide Time: 49:54) 
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So, I could add a i1, a i2 and so on so forth and I sum it all up by taking its magnitude 

here and this excludes i equal to j point and then, I get the discs corresponding to this 



row. What I do is, I keep plotting all possible discs, so I have this union of discs 

corresponding to each row. 

Now, the maximum and minimum Eigen value would correspond to a global minimum 

and the global maximum. All we have to do is, take a look at that matrix and see what 

their entries are and perform this, construct this disc and this is not very difficult to do 

because looking at the diagonal I know where the center is. I can take the modulus of the 

half diagonal entries sum it up are the radius, so for that row I know the minimum is here 

maximum is here (Refer Slide Time: 50:57). 

Then, I look at another row and compare this minimum and maximum. So, I keep on 

enlarging my union of the disc and find out what is the global, so that is a very easy task 

to do. In the present context, it is so much simple for you to do because it is tri-diagonal 

matrix. Your matrix has full of 0s, so all will have to worry about the diagonal term that 

is your center sum that two half diagonal terms that will give you the radius and what 

have we seen is some of this half diagonal term answers the diagonal term, you recall 

that we had written there what happens? We actually end up getting a disc which actually 

touches this point. 
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You will get the center in the middle diagonal term in here on the half diagonal term will 

fix it in the back. So that is rather very easy for want to do that. I think, we will continue 



this discussion; I hope you will remember after your nice holidays. We are not done yet; 

we will talk about little more on ADI method. Now, you know that what ADI method is 

and we will talk about another method which is of contemporary interest in use that is 

called as the Multigrid method, we talk about that. 


