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Contents of Lecture-23/24

In this combined lecture 23rd and 24th, we continue our discussion on solving elliptic

equation once again.

And we try to go back historically to the Jacobi method and point out that some of these
point iterative methods are more amenable to parallel computing. Having identified that
we also discuss about the convergence properties of these methods, which relate to the
diagonal dominance property of this associated A matrix which in turn determines the
spectral radius of this diagonal dominant matrix. In this context, we are going to talk
about a theorem which is attributed to Stein and Rosenberg. We will pick some model

problems and explain this Stein and Rosenberg Theorem.



We notice that there are other possibilities of accelerating the convergence namely by
relaxation methods; these are built up on around those basic methods that we already
talked about.

In this relaxation method which is also known as successive over relaxation method, we
are going to talk about SOR method or successive over relaxation method on the Gauss-
Seidel basic methods.

We find out that there are ranges of this relaxation parameters that is given by this

Ostrowski-Varga Theorem, which says that this parameter has to be between 0 and 2.

Once we have figured out how to accelerate the convergence, we try to quantify this
convergence criteria or the performance parameter of iterative methods - that is what we
are going to talk about. And in this context we see that some of these line iterative

methods could be further improved.

A new method was(( )) in 1950s which is called the alternative direction implicit method
or ADI method. This is how we are going to switch over from classical method to a

method which is found to be quite efficient.
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Convergence Issues for Iterative Methods

# We heuristically establish certain rules for the Jacobi
method first.

» For the Jacobi iteration for [4/{.X | = {h}, we split | 4] as:
[4] =[]+ [D) + [U].

#» Where [L] is strictly the lower triangular matrix (without
any non-zero diagonal entries); [1)] is the diagonal
matrix and [{'] is strictly the upper triangular matrix.

# For the Jacobi iteration. [ V] = | D] and then the
error-gain matrix is given by,
(6= 11— (DI~ [A)
= D7D — | DI A]
=—{D](|4] - (D]
# Thus, the error gain matrix is given by,
O = DI H(L+ ) (45)




You would find the Jacobi method still used for solving some of these classes of
problems, because you do not really need to pass on the information as the iteration

progress is from the neighboring nodes.

You know one of the major problems in parallel computing is 10, input output processes.
10 processes actually reduce the speed and sometimes it can lead to what is called as a

latency problem.

May be one node is done, but it is waiting for the neighboring nodes to complete that

sequence of work and pass that information; then only you can proceed.

Some nodes will be active and some will be inactive. This is a problem of latency that

comes about and that is not visited upon, when you are actually using Jacobi method.

Please do understand that it is not a historic discourse. We still have utility for methods
like the Jacobi method.

For the Jacobi iteration for this equation AX equal to b, we split the A into three parts.
This is not the same as what we talked about that particular example of A1 A2 A3 matrix
- that we have talked about. Here it is a much more of a general problem. So this A

matrix is split into a strictly lower triangular matrix that we identify as L.

Then we have a D matrix which is the diagonal matrix and U is the strictly upper

triangular matrix.

When | write L and U on the diagonal, there are no non-zero entries; those non-zero

entries are strictly put in to the D matrix itself.

Now we also know for the Jacobi iteration. We do that iteration where we take that new
matrix, which replaces the original A matrix, given by the diagonal matrix itself. So N is

equal to D.

And we have seen that G is given by | minus N inverse A; N is D so, this is D inverse A.
The 1 itself, | could write it as D inverse into D. If | do that then | can factor out D

inverse and | get this: What is A minus D? A minus D is nothing but L plus U.



We have an expression for G matrix which looks rather clean as given in the last
equation 45. All you need to know is the diagonal split matrix and the sum of lower and

upper triangular matrix.
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Convergence Issues for Iterative Methods

» As the error vector iterates are related by,

{ep™ =[G} D) (46)
# One can write this in component form with the help of
(45) and using [4],, = [a,,] as,
';J.-.__.‘L”-_ '-f‘l|{ n_. "’ k) _ _”'\‘.\x a_ (47)
» Weset (fori=1,2,...N),
h=2,m ||
# Primed summation indicates that ; = / is omitted in the

sum. The parameter ¢/, shows the measure of the
dominance of coefficients vis-i-vis the diagonal
component.

This we have already stated that error goes by multiplication of the G matrix and - what

we can say that - e of k would be written in terms of G into e of k minus 1.

Now what we can do in writing out in component form - what we actually do — is
basically, we write it like alpha ii into e i. Everything else other than the diagonal entries

put on the right hand side - that is what you have it in this square bracket in 47.

Starting from el to eN, they are at the previous level and multiplied by the entries of that

e matrix set A r G r - whatever you say - that is how you get it. This is how we get.

Now what you notice is that we can define a parameter which | call as theta i, which is
nothing but these quantities that are inside the coefficients alpha ij. And everything is

divided by the diagonal entries so that i write it as alpha i i.

What happens is - the error at the i th point at the k th iterate depends on the product of
this theta i times the error at the previous step.



What does this parameter indicate? The parameter actually tells you how each of these
quantities - different points and different errors - are contributing to the error at this k th

level.

If | have this quantity very small, that quantity that particular component of e at the

previous level does not contribute.

While if this point is very close to 1 or more than 1, then I can see that the quantity

actually gives more contribution.
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Convergence Issues for Iterative Methods

» Ifwe define ||r4/| = max|c"|, then using the maximum
principle on the absolute values in (47) and triangle
inequality, one gets

e N
e : 23 | agille

= vy =1
or | r‘||';||f #=1) # for 1=1.2,.... N (48)

# Hence the above can be written for the maximum norm
to provide the estimate:
y k r";_l'|H..,,.

# Convergence will be faster for smaller #,,,,. This is
alternatively stated as: if i, < 1, then the Jacobi
iteration converges. This is the sufficient condition of
Diagonal Dominance for convergence. It also is the
sufficient condition for Gauss-Seidel iteration.

What happens is this ratio theta i, basically tells you the role of the coefficient vi-sa-vi,

the corresponding diagonal component - that is what it is.

Given a matrix A, then you should start looking for what is this ratio going to be. If this
ratio is less than 1, that means what? It will contribute lesser, and lesser at the subsequent

level - that is what it means. This property is called the property of diagonal dominance.

I could basically define based on maximum principle, that some kind of an error norm
which | have called here at e of k, that is the maximum where | scan through all the

entries of that ek vector, and then we have this triangular inequality.



I could write that the modulus of error at the k th point is less than that quantity that we

defined as theta i.

In 48, you can see this theta i is here and that basically tells you that - | could say that —
the error at k th level is bounded by error at the previous level times the maximum value

of theta.

This makes at a stronger case. If | scan through all theta and pick up the maximum, then
this inequality will be even stronger when | replace these theta i’s by theta max - so that

is what we have done.

What happens is - then we can see - the convergence will be faster and the error will

decay faster if | have this theta max itself as small as possible.

This is what we really want; as we keep on going through this exercise of iteration, we
want the successive error norm to keep coming down and that will be ensured if this

theta max is less than 1.

If theta max is less than 1, then we can see this Jacobi iteration will converge and this is

what is called as the property of diagonal dominance.

That means what? The diagonal entry dominates over all the half diagonal terms. Then of
course, all the theta i’s will be less than 1, the maximum value is also less than 1 and so
theta max is less than 1. This is what is called as a diagonal dominance condition for
convergence of Jacobi iteration; this is shown to be sufficient and it has been also shown

as a sufficient condition for Gauss-Seidel iteration.
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Convergence Issues for Iterative Methods

# Condition of diagonal dominance is equivalent to having
spectral radius of the matrix |(7 ;| to be |ess than one
and both in turn implies convergence.

# Relative magnitude of spectral radii of Jacobi and
Gauss-Seidel error gain matrix has been enunciated by
Stein-Rosenberg theorem, stated as:

8 fthe | A| matrix has the following properties.

(g >0, 05 <0, ¢ 57
(i), > 3_:-}=: 1= [t with strict inequality for some i
(t6i)|A] i3 irreducibl (49)

» And |(+ ;j and [( "‘,J are the matrices of Jacobi and Gauss-Seidel
iterations, raspectively, then one and only one of the following
mutually exclusive relations holds for the spectral radius, A:

However, | will come back to you and show you some simple examples where | will
investigate that in some cases Jacobi iteration converges, Gauss-Seidel does not, and vice

Versa.

Basically, what does this diagonal dominance mean? That is also something similar to
what we have already said. Theta max would be somewnhat related to the spectral radius
of the G matrix. We have seen right? In the beginning of today, that the spectral radius -
the maximum eigen value determines the convergence rate. And if spectral radius is less
than 1 and - you have alternatively - we have a matrix which is diagonally dominant,

then both of them actually imply convergence.

There has been some attempt in formalizing some of these results. And this has been
stated by one of the theorems that is due to Stein and Rosenberg, which states the
following conditions that if | have A matrix with the following property: The properties
are written like this - the diagonal quantities are positive and up diagonal quantities are
negative. And in addition what we have is the magnitude of the diagonal is greater than

the sum of the magnitude of all of diagonal terms.

Theta was measuring individual entities, but this theorem demands something more

stronger.



It says, you take the (()) diagonal entries, obtain its magnitude, sum it over, excepting of
course the diagonal part, and if this inequality is given, then it is strictly diagonally

dominant; so the diagonal is really over powering everything.

Now, it may seem too much of thing to us - | mean - how often would you get to that

kind of a scenario?

Let us take a look at what we actually do. If you recall the A matrix that we have written
for the Laplacian, what we found is that the A matrix had minus 4 along the diagonal,
then we had plus 1 sub diagonal, super diagonal we had 1 - | am just talking about a

simple case of where delta x equal to delta y kind of a problem and that is this.

Now if you look at many problems of computing, you come across the Laplacian

operator. And this is the corresponding expression for the A matrix for the Laplacian.

You can see, | could just take a minus sign whole through; I could get the diagonals as

all positive and non-diagonal terms as all negative.

In this case, what happens if I look at it - Say some line here - Well, | have drawn it in
such a way that | do not have all the five quantities together, but if I look at it, what | see
is that the diagonal term in those cases where | have all the five entities becomes equal to
- see this sign, there would be equal to sign that is what is satisfy - 4 is the sum of all the

(()) diagonal term; this is quite often obtained.

In addition, if you look at some of the top lines and the bottom lines where you can
actually find that is this is missing - so of course - this is a strictly diagonally dominant
row in the first line.

In the same way, the last row you can see is strictly diagonally dominant; because this
has become 4 and this has become 2. This kind of condition, as demanded in this Stein-

Rosenberg theorem is quite often met.

This statement that is strict inequality for sum i is required; it is very often made. And

the last condition 3A is irreducible.



I suppose you can recall here - earlier exposure on linear algebra. What is irreducible

matrix? Well, it is that the rank of the matrix is equal to the size of the matrix.

That means what? You do not have any irradiant equations; all the equations are linearly
independent. Then most of the physical problem, that is how it should be; that is not a

very strict condition to demand from.

Now, if we have a matrix A with these three properties and we can estimate the gain

matrix for the Jacobi iteration GJ and the Gauss-Seidel matrix, that | call it as GS.
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Stein-Rosenberg Theorem
(MG =MGg) =0
Mg AMsg) < Allay) < 1
L= A\Gg)= AGy)

I < MGy)< MG3) (50)

b & b b

The essence of this theorem is that: The Jacobi and the
Gauss-Seidel methods are either both convergent or
both divergent and if both methods converges then
Gauss-Seidel method converges faster. Similarly if both
are divergent, then Gauss-Seidel method is more
divergent.

L3

8 If[A] is a symmetric positive definite matrix. then
Gauss-Seldel iteration always converges.

# Due to boundary conditions/ closures, above condition
of SPD is hardly ever met in practical computations,

Then we could have the following mutually exclusive relationship holding: The first
condition which says that may be all the eigen values of a Jacobi and Gauss-Seidel
iterations are equal to 0. Either that is true or both the methods are convergent. So, all the

eigen values are less than 1.

However, if you look at the sequence that when both the methods are convergent, the
Gauss-Seidel is more convergent; because Jacobi lambdas are greater than lambdas for

Gauss-Seidel.

When both the methods converge, the Gauss-Seidel methods seems to perform better and

that should be our expectation. That is what | told you in the beginning that when | use



more concurrent information, | should expect some improvement, but that provided that

A matrix should have all those three properties that we saw in the previous line.

The second last case is that both the methods are neutrally convergent; means - they do
not reduce error, it just simply keeps on retaining it and change. In fact, in many of the

practical competitions you will see that is what is happening.

After a few iterations you see, it does not change at all; it just remains like this. And the
last condition says, both the methods could be divergent. If they are divergent, you will

find the Gauss-Seidel method is more divergent than the Jacobi method.
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It is a simple model problem. We are looking at - it is simple model problem - you
should not have to really worry. You could just simply inverse the matrix and get the
solution directly, but let us consider this. Why are the Jacobian Gauss-Seidel iteration?

How do we follow it?
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Basically, what we are going to do is - if I am doing Jacobi iteration, what | would do?

If I do this what do | get? Let me start with some initial Guess. And the easiest thing for

me to do would to take all of them equal to 0.

Then what | am going to get from here? The next iterate k equal to 1 - what | would get?
x1 would be equal to 1, x2 would be equal to 3 and x3 would be equal to 5. So, these are
basically we are (( )) these are (( )) initially (( )) and from the initial guesses we are

obtaining this. Now the next step, what would | get?
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You just substitute these values of x1 and x3. What | am going to get here? This will be,

1 plus 10 minus 6 - that will be 5.

The second equation would be equal to minus 3 and third equation would give us also
equal to minus 3. And you look at k equal to 3. What we are going to get? This 2 will
cancel out. I will get x1 of 3 equal to 1. And from the second equation, | will get 3 minus

1 and plus 3; this will also be minus of minus (())1 and this also equal to 1.

Of course, there is no price for guessing, that is the solution. We can see that all the
equations are satisfied when | take this. So what it actually means is that if you keep

doing it further on, they will be the same (())

What it shows is that for this model problem, Jacobi method actually converge in the pre

(()) pre step (())
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Now if I move over and try to set up an equivalent Gauss-Seidel method, what | would

be doing? | would take - let say - the first equation to evaluate x1.

If I call this as the k th iterate for x1, then | will probably have an identical step, that is

what we had done for the Jacobi method.

However, what will happen is when | come to evaluating x2, because it is a point of

Gauss-Seidel (()) if I already have something (()) I will use that current information.

The x1 being evaluated here, 1 will put it like this, and of course x2. Did | write

something wrong? None of you pointed out. This will be x3 k minus 1.

And look at the third step that would give us what? 5 minus 2 x1. This is available at a
current level - so | could basically — so from here, I will use this information, whatever

x1 is made available by the current level of competition — we will use that.

The same way the x2 is evaluated; | use it here. That is probably one of the ways. You
can set it up in various other possible ways (()) struggling. And then what | would find -

that k equal to 0. We start off with again the same thing like before.
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You can keep doing and you will find that this does not show any sign of convergence;

so we draw the conclusion.

What happen is even for such a simple system, for a 3 by 3 system, | have got (()) one of
the k per by (( )) to show that your Jacobi method converges and the Gauss-Seidel
method diverges. So, where do you use again? How did this happen?
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Was the previous theorem of any use? We just enunciated the Stein-Rosenberg Theorem.
What we get? Look at the property of the A matrix (())
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This one is of course satisfied. This is irreducible. You actually lose out on the second

condition very quickly.
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The diagonal terms (( )) the way we have written down these are the diagonal (( ))
method (()) diagonal term they have magnitude dominate over the diagonal lengthily. So
do not have that diagonal dominance.

Of course, this theorem does not work. Initial condition, the starting requirement of the

property of A matrix are not satisfied.

That is what we are not going to make use of the Stein-Rosenberg Theorem. We have to
be aware of the fact - that is what | said that - apart from the property A, even this one
will have to check this, A is the symmetric positive (())

How do you do that? If you remember how to check for that - what you do is - you take
that A matrix and you work out the various sub matrix - is that you can from that right -
you can get this 3 by 3, 2 by 2 and 1 by 1 matrices.

And then when you take the determinant of those matrices, they all have to be quickly
has actually (()) positive
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That is when you call them as a positive definite. And symmetries, of course you can ((
)) - this is a not at all symmetry. Of course, symmetries are also evaluated and diagonal

dominances are evaluated - that is what we do not get it.
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Then we focus our attention to other things, other ways and needs by which we can get
the method work for us. And one of the way that we can make even this iterative

methods work for us is by these (()) relaxation methods.

If you recall that we started up with iterative methods by solving this (( )) alternative
equation, remember we changed A to new matrix N, then we work upon the solution

increment over iteration and the right hand side that is pushed by the residue.

Basically, residue is like forces, right? So, residue forces are the variation in u | plus 1

From ul to ul plus 1, that is driven by this quantity r.

This was observed and we figure out that the spectral radius was given by i minus n

inverse A; remember, that is what we got if we adopt the equation 13.

However, we could try to do something different; that is, we do not take the residue at
each and every point as we have calculated. We actually - over | mean - give an
overestimated role or underestimated role. So what we do is - we take the residue and

multiply by parameter theta. And that is what is called as a relaxation parameter.

If(()) less than 1 there of course, we are under relaxing.



Whatever the residue we have, we are taking a smaller component and forcing it to
convergence, trying to converge. Or, if we take theta betweenl and 2, then we have -

what we call as - over relaxation method.

How in the (()) both this type of variants are called successive over relaxation method or

what we call as the SOR- successive over relaxation method.

Now, why we choose the limit for theta to be between 1 and 2 for the over relaxation

method is governed by theorem (()) due Varga-Ostrowski which will state later

But | cannot just resist telling you the story that when (( ))Seidel is to do this kind of
work in Cambridge more than 100 years ago, then he use to actually used human
operator to do this sort of calculation in a room. | may have narrated this story to you

before, that you would make this human operator to represent node and a grid.

And then you go through this kind of exercise what | did just now. Remember, in the
Gauss-Seidel methods, | said first equation | use to calculate x1. And that information is
required for the person who calculates x2; because that was due to that operator, because

you have to take the most current value, whatever is available.

What would happen? All these people would keep doing this and (( ))Seidel noted - that
if you actually say - that is why the residue is maximum and in this point on residue is

minimum.

I would try to change, give more weightage here and less weightage there. Try to(( ))

equalize the march towards convergence by changing it.

Basically, (( ))even talking about this theta that we have given, capital data would be
position dependent; someone will take more weightage, someone will take less

weightage and this is to go on. That is how this method was (( ))worked out.

But when you actually approach a computer, you do not do such a thing. You try to keep
theta the same for all the fact; otherwise, it will become mind bogglingly difficult,
because you have to work out some kind of a strategy algorithm or you relate this theta

with node location.



Basically (( )) abandoned and this is what is correctly practiced. Well, about that story
was - it had a tragic ending of that story, because a (( )) very | would just turn task

master. So he is to take away the salary for every mistake that someone makes.

What would happen in that room? Everybody would compute and every sort of iteration
would be over; then few would oversee and you will be ok. Now, we can go to the next
iteration. That is how you use to do it. And in the process you would find out that some

operator would have made some mistake.

And of course, that destroys the whole flow of calculation. And so he is to dock salary;
he is to take money away for making wrong calculation. And it is - say | am not sure it is

just a story, just some of them would went back to the deficit at the end of the day.

That is the sad part. By anyway, this is (( ))a how the subject is (( )) where, what
computer does today; once upon a time unfortunate human beings do all that. And of

course, what we can do is really fantastic compared to those days.
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Now, suppose we adopt that algorithm that we said, that N matrix working on solution

residue. And here | have put theta and this is RI.

If I look at it, | could (()) work it out. How did you define RI? | Forgot. Tell me how did

you do that? A th minus b or b minus A - does anyone remember? | do not know.



(()) how I do it? I can plug this in here and I can simplify. What I find is that | get this
new iterate ul plus 1, should be now I minus theta times N inverse A.

Remember, when we did not adopt relaxation method. Theta was 1.
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Then we have the G matrix - | minus N inverse A. Here what has happened? By adding
this degree of freedom, by introducing capital data, we have altered the gain matrix,
which is now a function of theta.

Now, what we notice is that (())gain matrix is given by I minus theta (())

This is the way (( )) we would like to do the (()) frame work; obtain the G matrix like

this. Operationally what we do is that is given in equation 54.

What you do is you have an algorithm. With the algorithm, you calculate u bar at | plus
1. That is why - that over bar tells you that you have worked it out here.

u bar I plus 1 (()) gives surprise way.

What we notice is that this is the way we would adopt. We have an older iterate ul. We
have just now calculated u bar | plus 1. And then we look at what the solution is change.
We multiply by capital theta with that we add it to the prior quantity.



Like what is called a corrector strategy in a predictor corrector approach. Any solution

method is broken down into two steps.
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You have a predictor method. You predict it the way any algorithm that you choose. Let
say, it could be Jacobi, could be Gauss-Seidel - you would do that and then you obtain

that. This u over bar I plus 1 is output of the predictor stage.

Now what you are doing? You are over laying an additional correction and that

correction is obtained from this equation 54.



Equation 54 is your corrective stage. And this is your chosen algorithm. It is basically the

method that you may like to adopt, you will do that.

Now, | have tried to show it to you. If | adopt such a method along with Gauss-Seidel
point relaxation method - and | may say, (( )) | have a feeling that some of these
equations need modification. So please bear with me. | may actually put up the correct

slides in a day or two.
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However, what you notice is that suppose we are doing a Gauss-Seidel method, our
approach has been like this. If I am solving the problem in a domain like this, (( ))

arrived at a point here, that may mean that information available (())

This is what | have; | will call that as u bar level. So, (( )) at the k th iterate here.
Whereas on this side, | would continue to use the previous iterate, that is your Gauss-

Seidel strategy.

If 1 do that I try to write down and | will feel that this equation may not be correct - this

55; I will have to take a look among the correct one for you.

That is - (()) you have a two dimensional array. (()) It is two dimensional but you have

stacked it up as a one dimensional array. That is what we do all the time.



When | write u vector here, basically it is a two dimensional array written like a one

dimensional form.
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That is what we do. If | have now come to the i th node, the predictor stage - what | am
doing when | have come to the i th node? I think that there is gij missing here, please

bear with me.

There is a gij which is multiplying the use, which are already been calculated - that is
what we are doing. (()) has been taken to the left hand side and (()) below that i, I write

it like this. And anything that is above i, | write in the second path.
Now, (()) that is the way | calculate, | predict and update for all the points.

That is what we are doing. And in doing so, we are actually adopting those values which
are currently available in this first set of term. There is a second set of term belonging to

this part of the domain.

Following that predictor stage, we adopt the corrector stage; what we do is we do some

simple waiting.



What do we do? Whatever we have predicted, we multiply (()) by theta - so this is this
part - so this part is nothing but the equation 55 itself (( ))1 minus theta times that

previous (()) accepted solution.

At that end of predictor and corrector stage, whatever | have - | call that the quantity

without any over (()). This is the previous iterate.

So that | give 1 minus theta weightage and theta weightage to the currently calculate.
And of course, you can write it down. What | have written in an algebraic equation form

in 56 - you can write it down in a matrix form.

For example: u i k. What is u i k? u i k would be simply nothing but an identity matrix

operating on the u vector.

So that you just have picking the diagonal matrix. That is what you are doing. And of
course, 1 minus theta is scalar quantity and u i k minus 1, | have just written it like this

and theta times. This operation - now you will understand what we have done.
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If you recall what we have done, we have taken this quantity times - remember that is
what we did - alpha ii into ui. And this we kept it on the left hand side. And on the right
hand side what | do is | write alpha ij uj. This is going to be j equal to 1 to N. And of

course, | will exclude j equal to i point - that is what we do.



This comes from where? This gives you something like your D matrix diagonal entry. If
I split that A into D, | and u, then this quantity gives you - alpha ii gives you the D
matrix. And this part what we have done? We have split into two parts.
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We have written it down like this: alpha ij and uj; now j - | will go from j-equalto 1 to i
minus 1. That is one part which is known. And then that would be at the current level,
that is what we are doing. Here | did not write it, because | decided to write here for u in
a detailed way.

And then in the second part, | will start from the right of the point in question. If i is the

point in question, it will start from i plus 1 and this will take you all the way here.

This part is also done like this, but this part is not known at the current level; that is what
we do.

You can see that this part - what is this part? If I write A matrix as | plus D plus u, where
would this come from? If you remember, if you take a look at this, this part comes in the

lower triangle part of the matrix.

Diagonal defines where | am. Anything below is the lower triangular part. Anything to
the right and above belongs to the upper triangular part. That is what we have done. This
part is then something like D matrix multiplying with u.



That is that. And this part | will write it as, | matrix operating on u. I will write it as u of
k and there also let me write it. And this part would be (()).

Basically that is how we have done. D times uk is equal to | of uk plus u of uk minus 1.
Having done that of course, then what you could do? You can write uk would be nothing

but D inverse | into this, plus D inverse u into this - that is what we have written here.

You can see, there is a D inverse | part; so this bracket has not been closed. And there is

a D inverse u part, that is operating at the previous iterate level.

And then we have (()) equal to b; we just keep on adding that. There we may actually

have added here b vector. That is what we have here b and there I will also (())
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It is sort of term 1 minus theta operating on D and theta operating on u matrix, and that

the last one is that additive part on the b vector.

I am relaxing; | am not taking exactly the same value as the residue has been obtained - |
am not. | have just added the additional degree of freedom. That comes from the

previous equation that | wrote, remember.
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Gauss-Seidel SOR Method

# Thus, the GSSOR algorithm is given by,
[u)) = (D] + (L))~} [(1-©)|D]-O[U]|{u" 1} +0b})
(58)
» With the error-gain matrix given by,
[Gal = ([D] + @[L])!|(1 - @)|D| - e|U] (59)
» Ostrowski-Varga Theorem: If [A] is symmetric and «v,; = ()
(foralli's) Then M (e ) < 1, Jﬂ‘{ﬁ} IS positive definite and
N O <2,
# This is the basis for the choice of the upper limit for © in
SOR methods.

We have not taken what we have here. We have an algorithm by which we predict. That
is what is given in fifty (( )) second part. That part - | am not taking what it is calculated

as it is. I am taking a fraction of it or little more of it. That is what this theta indicates.

Theta indicates whether | am taking what | have calculated - the whole of it or a part of it

or more of it. That is the role of capital theta I.

Then to that what | do is | already have some estimate of it in the previous level; | take
the rest of it. This is - it is your something - like your lever rule, you may have done it in

your mechanic score.

Say if | have one value here and another value here about the fulcrum, | take a balance
quantity from both the side. Theta basically tells you about this relative size of the

distances from the fulcrum to the ends.

Think of your | of the left hand point at the bar and | plus 1 as the right. The one that you
are choosing by this method is where you are actually calculating the moment about the

fulcrum.

This is exactly the same procedure. This follow is whenever you adopt some relaxation
procedure. You take it in @ manner that it has to be consistent. What is the consistency

condition here? Consistency condition is the coefficient.



See on the equation 56, what is the coefficient of u is 1. And in the right hand side, the
coefficients are 1 minus theta and theta. When | add it up again it has to become 1. So |
have no other choice. | cannot just simply take 1 minus theta into theta. That will be
inconsistent.

You understand that - that is the consistency condition that you have invoke, that you
have taken a part of theta. If it is over estimated, then the other part has to be
underestimated. So that the two together would give a quantum which is exactly what
you want it to be. Of course, you can read if you find a new variable that is the easy to
do.
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Efficiency of Iterative Methods
The efficiency depends upon:
(i) Work required per iteration
(#4) Total number of iterations.

L I T I

For large I, it is seen that,

lessall oy
e = AlG
8 Thus, if A(GG) < 1, then lag, A7) equals the number of
decimal digits of accuracy gained at each step.

#» The rate of convergence is thus defined as,
RiGG) = —J'rr_ler,,\H T

That is not difficult. Having obtained the equation that we have in the last part, what |
could do is | can multiply both side by D plus theta | inverse. That will give me the

equation 58.

That is what | have. We have done and we have just simply taken D (()). The way we
defined the gain matrix is nothing but the coefficient of u of k minus 1, that is what we
are doing.

See | have u of k minus 1. I am multiplying by G to get the new iterate. And that is
precisely what we have here. In 58, this whole thing minus(()) gain matrix. With this we
have done it.



Now what happens? You can very clearly see how theta comes into play, because by

different values of theta, | could alter the Eigen spectrum of the G matrix.

For this Gauss-Seidel method, we can do that. And we can obtain the gain matrix as

given by 59. And then we can fall back up on this theorem of Ostrowski and Varga.

And these also require something out of the A matrix that you have. The conditionality

being that A has to be symmetric and alpha is positive - | just forgot to write that.

And then what will happen? This gain matrix - which is now the function of the
relaxation parameter theta, so the gain matrix - will have this Eigen spectrum. The
maximum of the spectral radius of that G of theta would be less than 1, if this A matrix is

positive definite, and theta is bracketed between 0 and 2.

This is the driving observation that why capital theta has to be upper bounded up to 2 -
this comes from this theorem.

Now of course, once again you find that many a times that these expectations from the

property of A matrix are not obtained.

We need to look for other iterative methods. We do that. We try to calibrate the iterative
methods by defining a quantifying parameter. Here we are calling it as the efficiency of

the iterative method.

The efficiency of the iterative method depends upon the following two sub classes: how
much work that | have to do in each iteration? That is what we are talking about - work
required for iteration. That has to be compounded with how many such iteration are left
(()) define the total work, for over all converges. And these (()) two together should be

minimum, that is precisely what we are aiming at.

To understand how to calculate, this will be little beyond the scope of (( )). But it is
shown that if |1 keep on doing this iteration over many steps then we can find out the
error norm at k plus 1 th stage, when divided by the error at the k th stage almost

becomes given by the spectral radius.



You have actually seen this equation in some more different way. When we did that - if
we recall how the error at the k th stage was related to error at the initial condition - We

found out that was related to lambda to the power N.

That was there we had, say that - If it was a stationary linear iteration, we had the same
set of lambda, but what happens is if we adopt the point of view that the G matrices are
going to be different at different levels of iteration like what you are going to go and give

it to me even for that 3 by 3 system.

Then what you find is that this spectrum of the G matrix will keep changing from
iteration to iteration. But if you go over a large step, then you would find that it all

balances out to the spectral radius of the equivalent stationary linear iteration.

So, basically done. You can see the importance of the spectral radius of this matrix then
(()) error you are reducing for time step; that is if lambda of G is less than 1, then if |
take a logarithm of that quantity, that will tell you how many decimal places that we
have shifted the error tool.

That is why we define this rate of convergence as minus of log lambda to the base 10. So
minus is of course, there to give it a positive flavor, because you know - | mean - if it is
really convergent method and lambda will be less than 1, and log of that will be minus,

so that is what over all you get a positive quantity.
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Alternative Direction Implicit (ADI) Method

» This is a method similar in spirit to the line iteration
method with relaxation. But, it is employed by switching
the direction of sweeping the solution alternately.

# Consider the following elliptic PDE in self-adjoint form:
Gl i)u — :—' Alx. .'rl:.fll - ﬁ [f I, l.:—l-‘ Str.y) (60)
where G > 0and A." > 0.

» Most of the times, the main operator originates from
diffusion and that is unbiased. Thus, it is discretized in
the following manner,

A, | (g 1y — Uy ) — 4 Loty =t |_,f'] A

= | 1 __,”-‘H_- .J Ly T 14 1 )ty l _:;J:, |_‘I ._\_I': (61]
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Now, this was the kind of scenario that people are looking at for a long time. Then came

this new method which is called the alternative direction implicit method, ADI method.

This is for some of you who are from chemical engineering would be happy to note that
this was done by some people working in chemical engineering. It came out in mid 50s

to late 50s. Peaceman-Rachford(()) - they are the major people developing this method.

See what really happened? Now - if you look at in a - take a historic perspective; first we
had this point method. In a point method also we could take a Jacobi method or we could

take a Gauss-Seidel method - we have seen that.

Then we have seen that we could also solve it line by line. We have those line method.
Then we have this relaxation method. So the subject is progressing. We have gone from
point to line and then from point to line to relaxation methods. And then this idea
occurred to some people right (()) is the boundary value problems. So all the boundaries

(()) could be incorporated as quickly as possible.

See what is happening here. Here the boundary condition is slowly percolating as | am
going up. Suppose I do it like this, that in 1 stroke | go from bottom to top and in the next

stroke, | go from left to right.

Then what happens? | am going from this way to that way, | am bringing this (()) and((

)) at 1 goal. This is being felt only when I almost come there.

Now if I (()) from left to right, this two boundary condition and this boundary condition

would come (()) right at one side itself.

In this alternative direction implicit method, ADI method, the name itself suggests that it

will switch directions alternatively.

Once | will go from - lets say - bottom to top, next | will go from left to right, and this is

what is the basic idea.

Now, let us try to explain it in terms of an equation elliptic PDE, as given by this
equation 60. And this is what is called as the elliptic PDE at self-adjoint form. Basically,

a self-adjoin form comes the way this A and C appears in this equation.



You can discretize this term in a manner so that the resultant matrix - you can invoke

symmetry of that matrix.

The role of self-adjoint form in solving elliptic PDE is quite central and we will start

from here in the next class.



