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In the 20th lecture, today we are going to talk about very important issue of error 

propagation in computing. This is what we have talked about here as error dynamics and 

signal propagation. This is central to most of the computing methods and we develop an 

alternative method or the correct method. That was proposed by Von Neumann. 

 (Refer Slide Time: 00:15) 

 

In this methodology, we are going to find out that in all computing, because of invoking 

of numerical dispersion relation, we end up having dispersion errors, phase errors. This 

leads to what we call as the uncertainty principle of computing. We will show that it is 

only in the continuum limit we can perform absolutely correct computing; anywhere 

else, we will have to accept some amount of error. This is the essence of this new 

spectral theory of error propagation. 



Once again we come back to discussion of q waves for various discretization methods. 

We once again talk about the finite difference method, finite volume and finite element 

methods. We pick up an example of propagation of a packet and we also show what is 

known as a Gibbs’ phenomenon. This arises whenever we have solution discontinuity. 

From the foot or the shoulder of this discontinuity, we see downstream and upstream 

propagating small scale oscillations and those are known as the Gibbs’ phenomenon. 

This is a major issue about compressible flow calculations which have shock waves 

present, but, nonetheless, we will not talk about it, but, we should be aware of Gibbs’ 

phenomenon as one of the major elements of scientific computing. 

Having completed our discussion to some extent on parabolic equation and on the error 

propagation equation, we switch over to solving methodologies for elliptic equation. We 

notice that elliptic equations have characteristics which form conjugate pairs and 

essentially that require that the problem be treated as a boundary value problem or BVP. 

Even in solving this boundary value problem, we have two alternatives: either we solve it 

directly - that would involve inverting very large dimensional matrix which becomes 

primitive in most of the cases; that is why we have to resort to the iterative methods. 

Once we start considering iterative methods, we have some interesting scientific 

possibilities; that is what we talk about by looking at the very basic equation - the 

Laplace’s equation and identify its molecule. 

We will see that this will amount to actually solving a linear algebraic equation with a 

pentadiagonal matrix which is not bounded together and that would exclude the 

possibility of having an analytic solution for this pentadiagonal matrix. So, we will have 

to resort to some iterative methods. These iterative methods will show, it is equivalent to 

invoking a pseudo time and that has a very interesting consequence because that pseudo 

time progression is related to the Eigenvalue and Eigen functions of that matrix upon 

discretization. 

Another issue of elliptic equation is basically the requirement of boundary conditions. 

Elliptic equations have complex conjugate characteristics. So, essentially if we have an 

elliptic equation of order 2n, we would require n boundary conditions. So, we are going 

to discuss quite a bit about this boundary condition requirements of elliptic PDE’s. 



Let me begin. Today, we wish to basically talk about a related topic that we had started 

discussing in the last few lectures. This relates again to the spectral analysis and we want 

to talk about a very important issue which was considered very very significant and it is 

still considered very significant. 
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It relates to understanding of a phenomenon, as to how error propagates. You see, the 

whole thing about numerical computation is about how you control error because 

accuracy is the main concern; we do not want error to hurt our numerical activity. So, we 

basically start off with the same model equation that we have been looking at. This has 

got certain features which we are all familiar with. 

If this is our basic equation - point of reference to study error propagation, let us first 

define what constitutes error. Error would be defined as the exact solution minus the 

numerical solution; the subscript N refers to numerical solution. We have also noted in 

the last few lectures that the numerical solution for this particular equation would be 

determined by the initial spectrum as given by A naught k. The method that you choose 

would have its numerical amplification factor G. So, if I take its modulus and suppose 

we arrived at time t, after N such steps of delta t, then G would be raised to the power 

that N, or alternatively, we can write it as t over delta t. 

Each step of time evolution gives rise to a phase shift; that we called earlier as the beta j, 

if you recall. Then, when I sum up all the phase shift that accounts for this numerical 



phase speed, that we called as c of N. We correctly identified a numerical dispersion 

relation, which we show by the subscript N. It shows that numerical circular frequency is 

equal to the wave number times the numerical phase speed. One of the important finding 

that we have focused upon is the fact that this numerical phase speed is not equal to c. 

Not only that it is not equal to c, but, also it is not a constant here. 

The physical phase speed is a constant; c is a constant. But c N as we have noted that it is 

going to be a function of k. This leads to the dependence of c on k, and that in turn 

relates to numerical dispersion and that is why the (( )) this is a numerical dispersion 

relation. 
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Now, having accepted that expression for numerical solution as a consequence of the 

adopted numerical method, we can actually look at what this partial derivatives of the 

numerical solution with respect to x and t, amounts to. It is rather simple. Taking x 

derivative would be simply multiplying by ik. So, we are assuming that we are not 

making any dispersion - I mean any error, in evaluating the derivative. I am not writing 

ik equivalent; I am writing the best possible scenario, that is using a spectral method. If I 

use a spectral method in calculating this derivative, I will just simply take the Fourier 

amplitude multiply by ik. 

If I start talking about a particular method, then I will replace this ik by ik equivalent; 

that I suppose all of us appreciate. Once I evaluate that derivative, the best possible way 



as given here in equation 4. Next, you could do is - evaluate the time derivative of the 

numerical solution and because time appears in two places: One is of course,, in the 

phase definition; another one is mod G to the power t by delta t. So, we get two sets of 

terms. 

Now, this is where I think we should allow our self to digress little bit into history. This 

is related to the Manhattan project. All these big guns of US science were in New 

Mexico trying to develop the nuclear bomb and one of the showmen was John Von 

Neumann; he is a Hungarian. He used to go by various names; in America, he was John; 

to his friend, he was Yuhang. So, John was a guiding spirit behind computing activity at 

Los Alamos. 

So, in developing, of course,, he was also associated with the advanced science at 

Princeton; that big group which were involved in numerical weather prediction; they had 

multifarious interests; really polymath people - let us all tip our hat to them. They are 

real geniuses; probably the last bunch of geniuses got together in one place - that must be 

Los Alamos. There Von Neumann was looking at computing and he came out with this 

observation. 

What seems very very intuitive and acceptable to all of us even today is that if I am 

looking at a linear system and if I am trying to compute a linear system, then it is natural 

for us to accept that the error committed also would be given by a linear system; it is 

common sense thing for us to accept, as the way we are trained in mathematics and 

physics all the time. 
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If that is the case, my governing equation is this. If this is my governing equation, what I 

would expect? The error should that is by this right the error should satisfy this. It took 

us almost 60 years to figure out that this is not correct. 

I sent you the link for the paper that you could download, which actually came out in 

2007. How do we come to the conclusion? Let us go through the steps slowly. 

(Refer Slide Time: 12:41) 

 

So, e has been defined as departure of the exact solution from the numerical solution. So, 

I just simply replace e by u minus u N. Then, of course,, you see it leads us to two sets of 



terms. What about the first two terms? By definition, that is 0. So, I find that the error 

dynamics is not homogeneous. Like what we expected, the right hand side equal to 0, 

but, it is determined by this quantity. How the numerical solution is going to be? It is 

such a simple observation. 
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Now, if that is so, what I could do is I could write, it is just simple jugglery here, I have 

added and subtracted this term so that we have del u and del t minus c del u and del x. 

These two are going to cancel each other. 

So, basically, a little bit of reorganization will tell us that we have inhomogeneous 

equation. The first part relates to what we do numerically. Now, you notice that I have 

purposely replaced c by c N because that is what we are playing with. Then, in addition 

we have this term. Since we have already evaluated the temporal and the spatial 

derivatives, we can put them in and collate. So, we are going to get these three subset 

terms. It is easy for you to understand that this comes from the x derivative; the next two 

terms come from the time derivative. So, we then substitute this, and this is what we get. 

Now, what we did in the previous slide, I could see that here c N is inside the integral, 

here the c N is outside the integral. So, what I could do is I could integrate this by parts 

because c N and the other thing is also function of k. So, I do that and then I would be 

able to cancel out this term. However, in the process of that cancellation what happens is 

we get this dc and dk term. 
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You see this is something we have noticed just a while ago; c N is not a constant; it is a 

function of k. So, we sourced it as the dispersion error. So, dispersion error directly 

appears in the set of time. This of course,, comes from the time derivative term. You can 

now see what I have been shouting (( )) for last few lectures that why we must have 

neutral stability. Now, do you see what I mean by having a neutral stability? 

If I have a neutral stable method, then what happens? Mod G is 1 and G is 0. So, you do 

not accumulate any error if you have a neutrally stable method. So, what happens is you 

substitute all of these and you get these three sets of terms. 
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This is what we get with such a simple common sense observation. So, what we could do 

is we could club these 3 terms and identify them. I find that the error dynamics is driven 

by 3 sources of terms; this is something that we are not talking about any specific 

method being chosen; this is a generic cause; this is the disease of numerical computing. 

So, whenever we do numerical computing, we are going to suffer by these 3 sets of 

terms. The first set of term is pretty much obvious because this relates to phase speed; so, 

we call it as phase error. You also notice that this phase error term actually depends upon 

the smoothness of your actual solution - numerical solution. With the problem that you 

are solving, that solution is discontinuous; that means this derivative is large; del del x of 

u N. Then, of course,, this is going to hurt you, but, if I have a very smooth function 

where this quantity itself is small, you may not see its effect very much. 

So, this phase error is something that you are going to see, what we talked about when 

we started talking about ODE’s. Do you recall? That is part of your first assignment also. 

You saw that whenever you have large solution gradients, you have to be able to resolve 

it and this equation and this term tells you that those kinds of gradients actually 

contribute a lot to the error. So, that is that part. 

The second part is pretty much obvious. We call it dispersion error because of this term 

dc and dk. 
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I have not done it. I will leave it to you to workout show this to be equal to proportional 

to V gN minus C N by k. So, you should be able to show that this term (Refer Slide 

Time: 18:45) is given by the departure of the numerical group velocity from the 

numerical phase speed. 

If you are looking at the original physical problem, both of them are the same; V g equal 

to C. So, you do not have it. So, you can see that this term is identically 0 for exact 

solution because V g equal to C; it is a non-dispersive system. But in this case, what 

happens? We found out C N is a function of k; that is why this is non 0. That is caused 

by this the departure between the numerical group velocities from the numerical phase 

speed scaled by the wave number k itself. So, this is the second source of error that you 

would be concerned with. 
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The third one is what we have been repeating time and again that if you have anything 

other than neutral stability, it is going to contribute to that. So, actually you can see that 

this analysis or this result that is projected in front of you would be colored by the choice 

of your method. If I focus upon a particular method, I should be able to figure out what 

these each quantities are. Then, I can figure out what is the actual error for that particular 

method is, but, this is the most generic description of what we get. 

(Refer Slide Time: 20:17) 

 



I have put it as a summary. Of course, the Von Neumann stability and error analysis is 

wrong. Unfortunately, this is what you find in all text books; even including the book 

that I had written in 2002 or 2003. 

We assumed it is so intuitive for us to accept that the linear dynamics should follow that 

we also fell into the same trap. However, we have shown here that error is driven by the 

following three sources of error: the phase error, the dispersion error, and the error due to 

stability or instability. This component is of course, 0 for neutrally stable algorithm. This 

is the question that we should ask our self - can we really get rid of phase and dispersion 

error? I have a pessimistic message for all of you – No. That is why we coin this term 

Uncertainty Principle of Computing. 

Whenever you compute, you cannot ever assure that you can take care of these, until and 

unless you have a perfectly periodic problem and you can adapt a spectral method. So, 

what happens is most of the practical problems would not let you use spectral method. 

Then you come to this pessimistic conclusion that we cannot perform completely error 

free computations. 

It is only possible when you go to the origin of that point k (( )) plane where everything 

is perfectly kosher and nice. So, that would imply that you will have to take delta 

vanishingly small so that you are going to the continuum limit of k delta x going to 0 and 

omega delta t going to 0. 
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So, this is what we have seen. Now, I did talk about this part g and Vg for these four 

classes of methods. We picked up from little advanced finite difference calculation; this 

is a classical finite difference calculation; this is some finite volume calculation and this 

is a finite element calculation. 

I brought to your attention, the existence of this line Vg N by c equal to 0, above which 

you will see Vg N by c is negative. These components of error or the solution - we will 

call them as q-waves; they are again spurious; they do not belong physically; they are 

attributes of the numeric. These are those solution components which actually have 

negative group velocity; they are opposite of the physical group velocity and for 1-D 

wave equation, 0 is the demarcation line. We can actually catalog what happens to this q-

waves business. 
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Now, I have purposely projected this in our k equivalent by k solution versus kh plane; 

this is the real part and this is the imaginary part. The real part determines the phase of 

the solution. The imaginary part tells us whether we are adding a numerical dissipation 

or anti diffusion. 

Now, on these two frames, we have identified locations - the values of kh, above which 

for that particular method actually has q waves. You can see that the modern the most 

recent and the most successful finite difference method that some of us use, gives you 

the highest q wave limit; that is roughly around 2.4. So, even with the best possible 



method we are having today, we notice that any kh component above 2.4 has this 

unphysical attribute where the solution will propagate. This has got nothing to do with 

physics; this is totally a numerical error. Whereas, if you come to your CD2 method, 

which is the lowest possible curve - that happens at 5 by 2. So, at least by going from the 

classical CD2 to the best possible method that we have, we could actually raise that limit 

from 1.57 to about 2.4. So, that is something. Now, despite that how come people have 

not located and reported q waves before? 

Two things you see even at that range are: what happens? What does this real part do? 

Ideally, anything above this is severely attenuated; even at that point, this attenuation is 

roughly about 45 percent. So, every time step if I adopt CD2 method, I am actually 

attenuating the signal by this amount. So, that is about 45 percent. In addition to that the 

CD2 method does not have any numerical dissipation. So, that is why you have the flat 

equal to 0.However, this 45 percent attenuation itself will remove that quite effectively. 

If some quiescent q waves are created, for values of kh above this, they are severely 

attenuated because of this filtering attribute of this discretization method. Whereas, if 

you take this good method which actually takes this limit from pi by 2 to 2.4, you can see 

this part is attenuated by only 3 or 4 percent. So, this is what I was joking that sometimes 

your strength becomes your liability. You have a better method, but, that is why you get 

to see the q-waves. If you choose a bad method, you will not see it and those people will 

come and commensurate with you saying - bad luck; you should try better methods. So, 

this is a very very interesting observation. However, I must also point out that some of 

the other methods - the finite volume, finite element, and better finite difference method. 

We do add numerical dissipation and you can see what happens. 

For example, this finite element method drawn by this blue line is the q wave limit and 

that is where we are adding this much of dissipation also; more than 0.5. So, what 

happens is those people who will be doing finite element method will say - this is a 

pigment of your imagination because we never see. They do not see it because they add 

so much of numerical dissipation; they damp out various components unknowingly. If 

they would have done it knowingly, I would have really acknowledged that. They 

probably do not even know what is a q wave; any way, that is different. 
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Now, this is the summary sheet for trying to solve the problem. Basically, once you 

know what the problem is, you can set up critical tests. So, we found out that for the CD2 

method, the demarcation feature was pi by 2. If I now take a wave packet with a kh 

greater than pi by 2, then what will happen to CD2 method solution? The whole wave 

packet will go in the opposite direction. So, that is one thing. 

What we have done is - we have chosen a wave packet with kh equal to 1.7, purposely to 

test out all these four methods. So, the value of kh is equal to 1.7 and we have taken a 

quite a moderate value of N c. Now, what happens? Let us solve this and show the exact 

solution by the green lines. This green wave packet is the exact solution which is going 

to the right because we have taken c equal to 1. So, the solution is going between these 

peaks. The difference is about 0.2 here and it keeps simple. 

Now, the CD2 method actually sends the whole packets to the wrong direction and it is a 

non-dissipative method; so, it does not dissipate. So, you retain the identity of the packet, 

but, it makes it go in the opposite direction. This is the method that we will be talking 

about in this class. This is what we have developed our self. You cannot distinguish 

between the exact and the numerical solution. They are going together hand in hand; of 

course,, our method also will fail, if we choose a value of kh greater than 2.4. 

So, we have to be very very careful in what conclusion we draw. Now, for the same 

problem, though if I use this finite element method stream wise upwind Petrov-Galerkin 



method SUPG and look at the solution that is shown. It is 0.004 and 0.012. You can see 

the green signal and the red signal. The times are so low that you do not even see the 

convection, but, you can certainly see the effect of numerical dissipation. See this 

solution is virtually diminishing there. 

This is the corresponding commercial software type of method, like Fluent. Fluent will 

do this with their best method. This solution is again shown at 0.008 and this as 0.1. You 

can see the signal has disappeared; it has all become quiet; that is why I said it is a quiet 

battle field. So, you want to see it little more graphically and this is what it is you can see 

an animation (Refer Slide Time: 31:52) - the top one is your exact solution, the middle 

one what we have carefully crafted, and you can see in this classical CD2 method, the 

whole packet is going to the left instead of going to the right. I suppose you appreciate 

what is q wave. Then, q wave is nothing but, an extreme manifestation of dispersion 

effect because we got it is a property related to V g. This V g is so bad that it actually 

takes you in the opposite direction. So, q wave is nothing but, the extreme manifestation 

of dispersion error. 
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The next thing that I am trying to show you is, we have just now seen what happens 

because of dispersion error, how about the phase error or to understand what phase error 

does, we have again purposely designed a case where N c has been chosen in such a way 

that I have g equal to 1. 
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I have chosen a method here, for which this G is almost equal to 1. So, what happens 

here? We are trying to study the solution of this equation for a function whose initial 

condition is given like this. So, it has a ramp like this. So, there is a slope discontinuity 

here and there. Recall that phase error depends on del del x and u N. So, if I set up a 

problem where I purposely have a slope discontinuity, I should be able to see its effect. 
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Now, these are the corresponding properties of the super accurate method that we have 

developed our self - that optimum scheme; these are some of the data which has been 



highlighted by Yogesh here, for you to view that If I choose kh equal to 1.7 and N c 

equal to 1.3. So, we are purposely doing a very large time step calculation - N c equal to 

1.3. Now, what happens when I have a solution like this? This is not solving a wave or a 

wave packet; this is not really monochromatic event; this is a real true polychromatic 

phenomenon because I have this u versus x, I can do the Fourier transform and I will see 

the whole range of k is excited. So, there is nothing that you can synthetically pick out 

one value of kh. So, this whole range of kh is coming into play here. 

So, you have to remember that this is not like the previous case, wherein, for the wave 

packet we chose kh is equal to 1.7. For this problem, you do not have that luxury; the 

whole range of kh has been excited. 
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Now, if you solve this, the ramp actually propagates to the right. I have taken the ramp 

angle as less than 90 degree; so, it is about 0.45 pi. What happens is - at the foot and at 

the shoulder, because of the slope discontinuity, I pick up error; that error has been 

plotted here. They have been plotted at a very early time. This is about 3 delta t; this is at 

6 delta t; so the story has just begun. I have this error; I can do a Fourier transform and I 

can plot it. This is what I get - the Fourier transform, Fourier amplitude versus kh has 

been plotted and I get this type of footprint. Now, what do you find? The error seems to 

have 2 maximum: one corresponds to a little higher wave number which I have marked 

by a, and one corresponds to little lower value. 



As I have identified to you, you can download the paper; if you do, you will notice what 

really happens and why we are seeing this; what are those two points a and b referred to 

as the source of those errors. 
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What we could do is - for the chosen value of N c, I could plot mod G. Let us say, I have 

some value of mod G equal to 1. Then, we find that we are going to get the different 

values of G for different points. So, we are going to see something like this (Refer Slide 

Time: 37:28 to 37:53); some cases the error would even be going higher. So, this could 

be j equal to … the middle point I am talking about. So, you can get this. In fact, if I have 

a first point here and if I look at the second point, I find that this part G actually goes like 

this and you know why? Because, the second point information has been brought in from 

(( )). 
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That gives rise to a large source of error. So, this peak where G is greater than 1 and this 

point corresponds to A because that is where you get more than one. 
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So, with time this peak in A is actually progressively increasing; that is one thing that 

you notice. In addition, if you have noticed that error revolution equation, we have a 

component which is proportional to 1 minus C N by C and that I could plot versus kh. 

What is found? If this value is 0 here (Refer Slide Time: 38:57), for most of the points 

this remains 0, but, then at one point it actually comes down and burst upon u like this. 



This point corresponds to B. So, what happens? This quantity remains benign for the 

whole range of kh, but, for a particular value of kh, it actually has a very sharp maximum 

and that maximum actually gives rise to this second peak and that also keeps growing. 

(Refer Slide Time: 39:40) 

 

If you look at this kind of a feature of the solution near discontinuity where solutions 

have overshoot and undershoot, this is what is called as Gibbs’ phenomenon. 

There are lots of myths in the literature about Gibbs’ phenomenon. This is the same 

Gibbs which you may have come across in chemistry, thermodynamics. He was a very 

very prolific gentleman. Do you know he was the first professor of Engineering at Yale 

with the salary of 1 dollar; it was more an honour than a salary. So, Gibbs actually noted 

this and this is called as a Gibbs’ phenomenon. 



(Refer Slide Time: 40:47) 

 

There are lots of myths, but, now you have an explanation - what causes Gibbs’ 

phenomenon. That comes out from this term. So, you can understand whether it is 

numerical or not. This is the driver term for Gibbs’ phenomenon. 
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Of course, you will have to find out this undershoot and overshoot looks like a wave. 

When they do look like a wave, they also behave like a wave. They move and you got to 

find out what is the direction of propagation of these waves, by looking at the 

corresponding V-g plots. So, you might see, sometimes it will progressively only go in 



one direction and not in the other direction. In this case, you can look at the paper and 

you will see that if I increase this ramp angle, I will make this thing worst. So, that also 

tells you the role of this term. So, if this term is made more adverse, you are going to see 

more error. This problem is not academic because this truly a problem of engineering 

dimension. Because if you are an aerospace engineer, you know that you do get shock 

waves. There, the solution actually jumps like the pressure, the velocity jump like this. 

If you are designing a traffic system, you can come across traffic bottle neck; that is 

where also you get solution discontinued or hydraulic jump. We talked about other 

things of sonic boom etcetera; they all suffer from this issue of Gibbs’ phenomenon. So, 

I wanted you to know about this; what this is; may be it is time that we should do a non-

numerical home assignment. So, I would ask you to go back and write out the error 

revolution equation for the heat equation. We have done it here for 1D convection 

equation; so, you do it for the heat equation. 

I will send all the email so that those who are not here, do not have an excuse for not 

submitting. So, everybody will get a chance to submit and get appropriate credit. 
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Now, we will go somewhere else. I get the feeling that we are going slightly slowly than 

what I would have, but, at the same time, I want to be with the whole class. So, please do 

interrupt me if you do not follow any of these things that I am saying here. 



These are some of the things you will not find in any book. These are not some of the 

things which you have (( )) of not written completely. So, as we go along, I keep 

narrating things to you. So, feel free to interrupt me any point in time. 
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Let us go back and see. This is a parallel track of development of CFD. Computing 

people have been solving heat equation, parabolic equation; people have been solving 

elliptic equations. These are the two major preoccupations of people, may be 100 years 

ago. Lots of the things belong to the realm of theory and you understand what their 

ramifications are. 

We have noted - if we are looking at quasi-linear partial differential equations and if they 

happen to be elliptic PDEs, we have complex characteristics that render them as a 

boundary value problem, and the reason is that you do not have real characteristics. So, 

information does not necessarily have directionality, that it is approaching that point 

from one particular direction. It means that it can appear from everywhere. So, this sort 

of feature that you do not have a specific preferred direction makes it omnidirectional. 

So, every point is affected by every other point in this neighborhood. Those points are 

eventually influenced by their neighborhood. In the end, you hit the boundary. That is 

why these are called boundary value problem because everything is determined by the 

boundary conditions and nothing else, in the end. That is what we have written here. 



Now, that also actually puts in a damper in all our activities; it means that if I am trying 

to solve elliptic PDE, unlike parabolic PDEs where we knew that information propagates 

along P equal to constant like in the heat equation. I could solve one timeline at a time 

and I can go forward right. So, that makes the job much simpler, but, because this is a 

boundary value problem, we will have to take the whole domain together and it makes 

the job little more involved. You have to solve the whole problem over the complete 

computational domain, and after you have done that you end up with the same thing - A 

x equal to b. 

Depending on whether you are choosing a very structured discretization or unstructured 

discretization, this A can have all kinds of features; for example, when we adopted that 

implicit method for heat equation. We saw that A happened to be a tridiagonal matrix. If 

it was a periodic problem, we had periodic tridiagonal matrix. 
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What happens to elliptic equations? We can have different natures of A. We will talk 

about few very simple cases. 

We also know that to solve A X equal to b by direct inversion, we would require N cube 

calculations and that is prohibitively expensive; very very bad thing to encounter. So, 

what we do is we circumvent the problem. Historically, this has been done ever since the 

time of Jacobi that you try to use iterative methods. So, you make some kind of initial 



guess and then you keep on increasing the guess based on some algorithm or methods. 

Now, if we do that the main question - that remains. 

We have started solving a problem which has elliptic nature. Now, the moment I choose 

on an algorithm, I had picked the problem; I have chased the problem. So, I could work 

out what is the equivalent equation. That is what you did in your mid-sem and you found 

out that you solved something else. So, this should alert us that we should not panic and 

give up, but, we should find out what it does. 
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For example, solving this Laplace’s equation in a Cartesian grid with uniform spacing in 

both directions; this amounts to this. 

This is a very interesting observation that u ij is nothing but, the average of its four 

neighbors. What does it indicate? If I am trying to solve the Laplaces’s equation in a 

domain where would I get the maximum value of the solution, can it be in the middle? It 

has to be only at the boundaries; why because interior points are nothing but, averages. 

Average cannot be more than the constituents. It is a simple observation. So, that is the 

maximum principle of Laplace’s equation. 

Please do not confuse. I have seen places where people keep saying that this maximum 

principle is true for all elliptic equation; or even for Poisson equation, it is not true. 

Poisson equation is where you have a right hand side. If you have something on the right 



hand side, this logic goes out through the window. So, do not try to do this. At the same 

time, if you are solving a Laplace’s equation, and in the process of your solution, if you 

see somewhere in the middle of the domain, that the solution is becoming larger, you 

should stop here and go back to the drawing board, and see whether your code is right. 

Now, let us also make our life easier by considering boundary conditions, given as 

Dirichlet conditions. Then, we will have to be solving problems for i equal to 2 to N 

minus 1 and j equal to 2 to N minus 1. 
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Now, for this problem, as we have written in 3, we get this structure of the matrix. The A 

matrix looks like this. The diagonal term comes from that 4 u ij, the minus sign; then you 

have 1 point to the left, 1 point to the right coming from the x derivatives. 
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Please be aware of the fact that if I do not say anything specifically, we are always going 

through this. So, if I talk about this x or let us say I or m index and if I talk about y or n 

index, we will be identifying a domain and then, we will be following this sequence from 

left to right and from bottom to top. This is what is called as a lexicographic pattern. 

What is lexicographic pattern? That is what you do in reading books. Different languages 

have different way, but, they still do have the structure. So, either you start from left to 

right, or from bottom to top; that is how we read books. 

Here, we are going to follow this term left to right and bottom to top. Imagine if the 

books are to be written in this fashion, all of us would take some time getting used to 

reading from the last line and going to the top of the page. 
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Anyway, in computing that is what we do. Then, if I am looking at one particular point, 

here then I need four neighbors; so, this point gives me that minus 4 - the diagonal entry; 

this point and this point (Refer Slide Time: 53:04) because we are going from left to 

right; so, they have contiguity. They follow each other; those are the ones that you are 

seeing here - plus one here and a plus one there. Now, this is really the neighboring 

points. 

What about this? This point has happened a pitch before. So, these are those entries 

which are corresponding to j minus 1; j plus 1 would be given by these diagonal entries. 

So, these are once again called penta diagonal matrix because you have 5 diagonals; but, 

they are not packed together. 
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If these two lines - this diagonal and that diagonal were sitting next to those, other three 

lives would have be lot simpler because like Thomas algorithm, we should be able to 

write out an exact solution procedure. But unfortunately, because of this intervening 0s, 

this is one of the vexing problems - that has baffled applied mathematicians for long 

time. So, we cannot directly invert this matrix, although it is sparse. So, this is something 

we should keep in mind that this direct inversion is not possible 
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If the size of the matrix is large and if you are trying to do a direct inversion, we are 

going to take very large computing time, at every time we have to solve that equation. In 

actual physical problem, it may so happen that for a time dependent problem, we will 

have to solve a elliptic equation at every time step. So, you can imagine that any time 

saved for each time step accumulates and saves you lots and lots of computing time. So, 

there is an incentive for us to look for methods which will allow us to solve this equation 

in an efficient manner. 

Now, that was the motivation behind developing various approximate means and let me 

start with the oldest and the classical method due to Jacobi. Later on, Richardson also 

used the same method; maybe he popularized. So, it is also called the Richardson 

method. 

What we do here? We are solving that Laplace’s equation with unequal delta x and delta 

y, given by h and k. This is a discrete equation. What you do here in the Jacobi method is 

- you try to evaluate the solution by pegging the diagonal entry at the current level and 

everything else at the previous level. So, this actually was practiced with the hope that if 

I take a very very large number of steps, when n goes to infinity, the solution would not 

know what the difference between n and n plus 1 is. 
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So, initially all got stopped there, but, then subsequently people went through the 

analysis and tried to justify why and how, this method would work. You have seen it 



yourself in your exam paper that you actually are doing something like this, because 

when I am shifting this index superscript by one level - that is equivalent to doing this. I 

am introducing some kind of this pseudo time stepping. 

If I substitute this in the prior equation, with non-uniform delta x, I mean they are 

uniform in x direction, they are uniform in the y direction, but, delta x is not equal to 

delta y. Then, we get this equation 6. This alpha multiplicative constant depends on the 

time step times the space steps that we take. We have done this. So, I do not think I need 

to explain it to you to that extent. Only thing is - you note that in 8 and 9, we do not write 

ux t and uy t. The reason is obvious; we do not want to increase the order of the system 

because u t itself is Laplacian. 
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If I take u xt, that would be actually increasing the order of the equation. So, anyway, we 

figured it out; we got the solutions. These auxiliary equations collated with the 

differential equation and gave us the characteristic determinant in terms of equation 10. 

You can see - one of the characteristics is of course, t equal to constant; that tells you that 

you are basically marching in time. So, that is your parabolic direction and in the space 

direction, we have seen dy by dx as it appear on this. 
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Please do understand that all elliptic equations have to be of even order because if you 

are going to get complex characteristic, they have to be conjugates. So, always elliptic 

equations will be of order 2n. That is what I noted down on top that elliptic PDEs are of 

order 12. 

Now, this is a very interesting observation. The next line, the number of boundary 

conditions - this is something I find very baffling. So, I just drew two diagrams; think 

about it; one is a perfect rectangle; another is a rectangle, but, with corners rounded off. 

You come back and tell me how many boundary conditions we need in the next class. 

We will stop there. 


