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In today’s lecture, eighteenth, we continue our discussion on solving parabolic partial 

differential equation by classical methods. These are essentially explicit methods and one 

of the properties of this explicit method, is that it brings in its own numerical 

characteristics, as opposed to the physical characteristics. And as demonstration, we are 

going to show the FTCS method, and we will see that it brings in significant restriction 

on the time steps and one of the way to avoid this problem of time step restriction is to 

switch over to implicit methods, and this is demonstrated today, by again, considering 

the heat equation. 

One of the disadvantages of this implicit method is that we will have to be now solving 

matrix equation, but fortunately enough for the heat equation, this comes to be a 

tridiagonal matrix and which yields an exact solution by using Thomas algorithm. 



Having adopted the implicit method, one would like to once again go through that 

stability analysis by the spectral analysis tool, and then we will establish its stability and 

its enhanced ability to take larger time step. However, at the same time when we have 

periodic boundary conditions or the periodic problems, we need to converge this 

tridiagonal matrix into its variation, called the periodic tridiagonal matrix and this will be 

studied in detail. 
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We are solving parabolic partial differential equation and today we just demonstrated (()) 

first taking a one dimensional heat equation as given here - partial derivative of u with 

respect to time is equal to the second derivative of u with respect to x, and this is defined 

in a x-t plane with spacing indicated by index i along the x direction and j along the time 

direction. And we specifically talk about a simplest possible explicit algorithm which is 

called as forward in time centered in space or FTCS algorithm, and that involves taking 

this time derivative u of t; I am writing it in this form on the left hand side. 

The same way, we can take the second derivative of u with respect to x on the right hand 

side and represent it by this difference expression. Having done that, we note that the 

points involved in this algorithm are given here by this dotted points, that is, u i j plus 1, 

which is at the advanced time level - j plus 1th time level, depends on other three points 

which are given on the line below. 



In the language of competition, this participating note points constitute what is called as 

the computational molecule; so, this is what we are going to call as the computational 

molecule. 

Now, in looking at this problem we know that this is a parabolic partial differential 

equation, so its physical characteristics are nothing but t equal to constant and this is 

what we have as the physical characteristics. Whereas we note that the node at the 

advance time level actually depends on this three points, and this three points again in 

turn depend on their corresponding three dependent points, that is, this one, this one and 

this one and for this - this point, this point and this point. 

So, what actually means, then this point eventually depends on a cone which is defined 

by a line like this. The extremities of the cone is given by this and these are what are 

called as the numerical characteristics. Thus, we understand one interesting attribute of 

how computing is the distinction between the physical and the numerical characteristics. 

This is something very fundamental that we will be visiting again and again and we will 

point out that one of the goal for the accuracy of the solution depends on, how we bring 

this numerical characteristics as close to the physical characteristics as possible? 
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So, this is a single one, but here we end up getting two branches, that is what we get 

now. You can very clearly see, that to make, to think work for you, you should have 

these two sets of characteristics approach each other. 



How do you do that? A very simple observation is if I reduce delta t, then what will 

happen? This wedge will open up towards the theoretical limit, the physical 

characteristics; so, that is what we can do. 

So, the way to do that, so may be if I have to make this observation, delta t should be as 

small as possible; so, that is the rule of the game, that is one of the way. But you already 

know from your experience in computing, what you have done just now I am going to 

submit today, that taking smaller time step also makes the process very very slow, so that 

is not a very good option. 

That brings us to the question of trying to find out if there are other methods, which we 

will do that as desirably as possible, at the same time would not consume too much of 

time and resources. 
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In this context, we start talking about implicit methods and you can see the motivation 

actually comes from this diagram that we have here. We want this physical 

characteristics and the numerical characteristics approach each other and how do you do 

it? 
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That is noted here, that what we have done here when I wrote this FTCS algorithm, what 

I did? I evaluated this at say some node, which I called as x i and I try to get the time 

level, which I called as t j and what did I do is, I wrote this as u x x evaluated; now, u x x 

is evaluated at what level? At the jth level also. 

So, that is also written for the ith node and this and as a consequence we had this wedge. 

Now, what we could do is, if I do the following, like what we have written down here in 

equation 15, that we will take the right hand side evaluated at two time levels - one is at 

the jth level and suitably blended with second derivative evaluated at the prior level. 

So, basically then what we are doing? We are doing, rewriting the right hand side as a 

weighted average. How is the weighting done? Lambda has to be between 0 and 1 and 

then if i do this, what I am doing actually? 
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The first term, if I look at it, put involve these three points because I am evaluating that 

at the j plus 1th level, so that is what we are going to do. Whereas this 1 minus lambda 

times u x x are those three points that we had before. 

So, what we are doing? We are now, instead of having a computational molecule 

involving four points, we are having it in terms of 6 points, 6 points and what we are 

doing then? Instead of taking the value which defines the molecule at this three points, 

we are taking some kind of a weightage average between this point and that point, that 

point and that point and that this. So, this is the sequence. 

So, what happens is, depending on the choice of lambda we could do many things. For 

example, if I would set lambda equal to 0, that is, I do not evaluate the derivative at the 

advance time level, get everything from the previous one, then we go back to our FTCS 

algorithm that we can very clearly see; so, this will be just simply that what we have 

written over there. 

Now, this is what two gentlemen from Cambridge - Crank and Nicolson - they did it in 

mid-forties. What they say that take a kind of an unbiased average, take half and half 

contribution coming from each time level; that is your lambda equal to half means. 

So, I will take the second derivative evaluate it at the advance time level - fifty percent 

and the rest of it is coming from the previous time level. 



Now, we could also, of course it is a whole continuum, you could choose a value of 

lambda anywhere between 0 and 1, but we are looking at some very specific cases and 

one of which, if I look at is, if I take lambda equal to 1. Now, of course, this terms 

switches off and all the contribution of the derivative would come from the advance time 

level. 

So, basically, then you are going to actually have a computational molecule having this 

three points only and then what you see - the numerical characteristics is completely 

aligned with physical characteristics. 
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So, that should be the quite a desirable case and I think this was done by, attributed to 

Laasonen, if my source is correct, and this was I think done sometimes in that era; Crank 

and Nicolson suggested this sometime around 46 or 47. And this whole approach of 

blending the two was suggested by Crandall of MIT and then, that was a big game 

changer in the computing business. That we understand that there are better methods that 

we could do that will mimic physics better, and in the process, you could get your 

computational methodology also quite efficient and fast. 
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Now, what does it do? What does it do is, it actually... Now, what we had done here as I 

had written in the slide before, so we are going at u x x evaluated at... ,so this is what we 

are writing. So, if we are writing that then, of course we can expand it and if I do, what I 

am going to get here is u i j plus 1 minus u i j delta t; so, this is again Euler time 

integration, so, this is till the Euler time integration that we are resorting to. All the 

balancing or certainty is coming from how we treat the special derivatives at different 

time level. 

If I of course, write this I will get... If I call that as delta x square and then I will get u i 

plus 1 j minus 2 i u j plus u i minus 1 j, that is this part and from here I will get lambda 

by delta x square and I will write down the same stencil, but now it is evaluated at j plus 

1th level; so, this is what we are going to get. 

Now, quite like what we did for the convection equation, we can see some parameters 

are naturally coming out, that we already have defined and we define the peclet number. 

If you recall, in the last class that was simply the ratio of the time step by this. 

Now, in addition we also have brought in a extra degree of freedom in terms of this 

parameter lambda, so we could define a new quantity, which are called, that is the theta 

will be nothing but peclet number times lambda. 

So, that is simply nothing but lambda delta t over delta x square. 
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So, you can immediately complain that I could simplify this and I could write down all 

the quantities which are at the advance time levels on the left hand side, that would 

involve this term and all this three terms, those are written down here on the left hand 

side, those have been written down there on the left hand side and put everything at the 

previous time level on the right hand side; this basically gives you this equation. 

So, unlike the explicit method, you realize that now you cannot explicitly pick up the 

value of the unknown one at a time. What is happening now, your unknowns are all at 

the j plus 1th level, but they are appearing in a coupled manner, that is, the i minus 1 i 

and i plus 1 they are taken together. 
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So, if I look at that, what does it do? Well, you can very clearly see that you cannot solve 

it in isolation, so what we are going to do is will keep… Suppose I have a (( )) like 

condition, boundary conditions, so that is, u is prescribed on this two ends - at x equal to 

0 and x equal to 1, they have prescribed, then I write down that equation for all the 

points. 

So, if I keep doing it then what do I get? I am going to get a stack of equations. The first 

one will involve, if I look at it here, the first one will involve this point, this point and 

this point, so 1 2 and 3. What happens to 1? It is a divisional condition, it goes to the 

right hand side. 
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So, we are going to have a linear algebraic equation that has the diagonal term u 2 2 and 

say u 2 3 or it is like this. So, basically what I am saying that I will write this equation, 

let us say for any j; so, there is no problem, but I will write it for say, i equal to 2. 

If I write it for i equal to 2, then I am going to get minus theta and u 1 j plus 1 plus 1 plus 

2 theta u 2 j plus 1 minus theta u 3 j plus 1, and everything that has gone on the right 

hand side, I will just simply write it as rhs 2; so, that is the whole contribution coming at 

the point two by right hand side. 

Now, of course you can see if it is a divisional boundary condition, this can also be 

transported to the right hand side; so, that is what I said, that this equation would simply 

have 1 plus 2 theta and I will have u 2 j plus 1 minus theta u 3 j plus 1. And I will write 

this rhs 2 and put a prime to indicate the boundary condition has augmented that what we 

had earlier on. 

Now, I could write the same thing for i equal to 3 and now, you will notice that this term 

of course would be there, so, you do not have to, you do not need to take it to the right 

hand side; it is an unknown. So, if that is so… 

And this I am going to write rhs 3, so I could write all that. So, what I am going to do is I 

am going to start that equation, I will start writing for i equal 2 then i equal to 3 and write 

it for all the unknown points, all the way up to here. 



So, that is the way the equations stack together and when you put them together, you will 

get a linear algebraic equation like this, where a would have the elements which are 

given here. So how many non-zero elements that you get? Only three. 

So, you will get the point corresponds to whatever the i value that you have chosen, that 

is here, that is I will get it as along the diagonal and this term will go on to the super 

diagonal, that is the next point in hierarchy. 
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So, basically what we are doing, we are following this sequence that i will go from left to 

right and j will go from bottom to top. So, if I do that, that is what we are doing. We are 

fixing a value of j and then writing all the quantities from left to right and that is why we 

are getting this equation. a are those coefficients of that left hand side, x is the unknown 

vector, so the vector will be like this say, 2 j plus 1, 3 j plus 1, 4 j plus 1, so that is a 

stack. 

So, I am just simply, thus, economizing on space and calling it as x and this rhs that you 

have identified here, they all go to the right hand side. So, it is a very simple sort of a 

migration, that you can say that we have gone from an explicit method into a business of 

tackling a linear algebraic equation of this kind which is a x equal to b, but a as a very 

neat structure; I think, I have it here that we will tell you what it is, it has a structure like 

this. 
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So, you have that diagonal elements and you have a super diagonal elements and you 

have a sub diagonal elements. So you can very clearly identify, so these are your like a 

i’s, these are your a i’s; so, if I have to write, so this will be my a i and this is b i and this 

is my c i. 

So, for every point I am going to get this. Well, you might think why I am giving a 

subscript here, it is not needed, it is basically constant, for all ith point it is same. 



But, let us discuss for a general case where you may have this things which could be no 

dependent. Yes, lets discuss such a case and let me tell you that this equation despite its 

simple appearance, is a central methodology that is used in computing very often. You 

would come across this procedure of solving this tridiagonal matrix equations. 

So, this is why we are calling it tridiagonal, we are the diagonal super and sub diagonal, 

so it constitutes three non-zero stacks, diagonal arise; so, that is why these are called 

tridiagonal matrix. 

So, that is your structure of the a matrix and x vector. I noted to you how it is going to be 

accounted for, so will fix a j run through all the i’s from left to right, then migrate to the 

next j and so on, so forth. 

So, this is the sequence that we will be following in cataloging this unknown x. So, 

whenever you have matrices with lots of 0s they are called sparse matrices and this 

particular a matrix is not only sparse, it is also tridiagonal matrix. 

So, what happens is, good news in this story is that this equation can be solved exactly 

and this is what Thomas did, and it is well known as Thomas algorithm and this is what 

we are going to now discuss - how we solve this tridiagonal matrix equation? 

Well, the logic is simple. I have a matrix a, I could split it into two matrices - one 

corresponds to a lower triangular matrix, another would be upper triangular matrix. So, 

this is a very standard technique that you actually employ in linear algebra that if you are 

given a matrix equation with arbitrary a, what you try to do? You try to split it up into 

three parts like it is called LU-decomposition. 
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So, what you have is the basically lower triangular matrix and this is a upper triangular 

matrix and this is a diagonal matrix. So, in this case what has happened? We have 

dispensed with the d path; we are just simply writing it as the product of the lower 

triangular and an upper triangular matrix and let me just tell you how this is formally 

done. 

(Refer Slide Time: 26:55) 

 



Because of that sparseness, so many zeros all over, what we could do is, we could write 

down this term lower triangular matrix is like this; so, above the diagonal it is all 0, that 

is why, it is called lower triangular. 

But because of the sparseness, what we notice also that even in the lower triangular 

matrix also, you have a large number of zeros barring only the diagonal and the sub 

diagonal entries. 
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So, if I decide to call those entries as d 1 in the first row, then l 2 d 2 in the second and l 

3 d 3 in the third and so on, so forth, so I have this formal structure. So, it would be our 

interest to find this out, I will tell you how we are going to find it out, but let me first tell 

you what we can do with the upper triangular matrix. Upper triangular matrix will also 

have a similar structure by analogy. 

The lower triangular part will be 0 completely and the diagonal part here, I could have 

some value, but what I have done here? I have basically divided that, but the diagonal 

path, so that the diagonal entry has become unity and the super diagonal entries are 

written as u 1 u 2 up to u n minus 1. 

Now, how do I find these entries l d and u lower case quantities? Well, simple thing for 

you to do is take this l and u matrices or take the product and equate it with what you 

have with u matrix entries. 
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Next, we are going to talk about special algorithm called the Thomas algorithm which is 

used to solve in a direct fashion, a tridiagonal matrix which we have written here as the a 

matrix, which has three entries - branded entries b i’s along the main diagonal, c i’s 

along the super diagonal, and a i’s along the sub diagonal. And one of the way in which 

this equation can be very easily solved, this matrix equation can be easily solved is by 

decomposing this tridiagonal matrix into a product of a lower triangular matrix times and 

upper triangular matrix given by this. 

Please note the structure of this lower triangular matrix which has d i’s along the 

diagonal and l i’s along the sub diagonal elements, rest of the elements of this matrix is 

identically 0. Also note, that the upper triangular matrix has one along the diagonal and u 

i’s along the super diagonal. 

This is one possible way of decomposing the a matrix into l times u, but we could also do 

a complementary splitting where we could have one along the diagonal of the l matrix 

whereas the diagonal entries of the u matrix would be not equal to 1. 
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Both are essentially equivalently the same thing, but it is easy for us to realize that we 

can work out directly the entries of this l and u matrix by performing a product and for 

example, if I look at this entry a 1 1, that is, this b 1 is nothing but product of this first 

line of l matrix multiplied by the first column of the u matrix and that is going to give us 

simply as b 2, sorry b1, b 1 is equal to nothing but d 1. 

Similarly, the second entry of the a matrix c 1 would be nothing but product of the first 

row with the second column, that means, c 1 would be equal to nothing but d 1 u 1. 

So, we can very clearly see that u 1 is nothing but equal to c 1 by b 1 itself. So, basically 

b 1 is defined like this and u 1 is defined like this. Now, we can go through this exercise 

on the second row of a matrix, for example, a 2 would be the product of the second row 

of l matrix multiplied by the first column of the u matrix. 

So, that means a 2 would be simply equal to l 2. Now, if I look at the entry b 2 of the a 

matrix, that will be a multiplication of the second row of l matrix multiplied by the 

second column of the u matrix. 

So, that means i will get b 2 should be equal to l 2 u 1 plus d 2 and finally on the second 

row of a matrix, we have the entry c 2 and that would be multiplied, obtained by 

multiplying the second row of l matrix with the third column of the u matrix, and that 

would be nothing but equal to d 2 u 2. 
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So, what we can see that if we use this as the starting value here, d 1 is equal to b 1 and u 

1 is equal to c 1 by b 1 and then we can easily obtain l 2 from this. Since u 1 is already 

available, l 2 is available; so, this equation will give us d 2. Once d 2 is known, c 2 is the 

given entry, we can use the third relation to obtain u 2. So, we can see that this procedure 

can be generalized; we can actually see the generalization emerging from this relation 

itself. For example, we could write a j is equal to l j and then we could write b j is equal 

to l j times u j minus 1 plus d j and c j is equal to d j times u j. 

So, as before we would be able to use this equation to obtain l j and this equation will be 

able to use to obtain d j and the third equation would give us u j. So, that completes the 

splitting of the a matrix into l and u. Find the entries of l and u matrices and that is your 

original equation a x equal to b. 

So, suppose I define u times x as g vector, u matrix multiplied by the unknown, if I call 

that as g vector then this equation is nothing but l times g equal to b. So, in equation 21 

what you are seeing? You know the entries of l matrix, you know the b vectors, you can 

solve for. Why you can solve for? Because it is a simple structure, so what you can do is 

you can start from the top. 

You can take the first row and evaluate g 1, then you come to the second row, from there 

you can calculate g 2 because this equation will only involve g 1. So, we we could go 



through this, that is what I am saying that g 1 would be equal to nothing but b 1 by d 1 

and then once you have that, you can go to any other lines from 2 to n. 

So, basically in solving 21, you go from top to bottom, so you have exhausted knowing 

this vector g. So, once you have the g vector, then you will have to solve 20. That is easy 

because that also has this sparse by diagonal structure. 
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So, what you can do is now you can see the last row has only one known 0 entry and so 

you can now go from bottom up sequence. So, that is what we have done, that if I look at 

the last one, then this multiplied by g n should be equal to x n. 

So, since I know g n, so that means I have found out x n. So, if I figure the doubt, then if 

I go to the previous line, that would involve here g n minus 1 plus u n minus 1 into g n 

should be equal to x n minus 1. So, that is what is the general form of that equation. 

So, we could write the doubt. So, since I have a starting value, I can go back once from 

bottom up and get the unknowns x. Now, so this is the way that we solve. 
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Why would we take the trouble of going from an explicit method to implicit method, 

provided we do not get dividend? 

So, let us try to find out what we gain and the best thing for us to really find out, what we 

are getting in terms of its stability property? Because we recall that the fact that we have 

to, apart from accuracy, will also have to ensure numerical stability. For example, in 

your assignment, you must have seen that if you take lesser number of point which is 

blows up; so, that is a sort of a defining sequence of numerical instability. 

So, here also we do the same thing. What we do here is just write down the difference 

equation and we will follow the same language by defining this unknowns in terms of its 

special dependence in terms of Fourier Laplace transform. And we are looking at the mth 

node, so that is why, we are writing x of m and this is evaluated at nth time step. 

So, we will do this and we will substitute it here. If I do that, well, actually this is a little 

clumsy work, I should have used some other subscripts because this i and this iota should 

not be confused, this e to the power i k x is the square root of minus 1, I think I will go 

back and correct it and load the correct one, I will exchange this subscripts in these 

equations. 

So, if I do that, what I am going to get? As we have done in the spectral analysis of the 1 

d convection equation, I will get the same thing. Now, what you are seeing here that I 



have a quantity that would be evaluated at t n plus 1 and the right hand side would be all 

evaluated at t n. 

So, if I divide the both sides by U k of t n, then this one will give me a G and because it 

is also shifted to the left by 1 grid point. So, that is why I will have this e to the power 

minus i k h and the diagonal term is, of course, we are looking at i jth point. So, diagonal 

term will not have any such shift, whereas the last one is shifted to the right, that will 

give me a e to the power i k h here. And of course, you understand theta is retained as it 

is and this u j plus 1 and divide by u j, that will give me G. 

Right hand side is a clean expression. So, of course, what you can see here then… well 

well if, if, if, if, if, if you look at it, I could club the first and third term on the left hand 

side together, so I have e to the power minus i k h plus e to the power plus i k h and then 

I have the quantity 1 plus 2 theta into G, 2 theta into G, that is on the left hand side and 

on the right hand side, we could take P e minus theta and that will give us e to the power 

i k h plus e to the power minus i k h, and the other quantity is 1 minus 2 t e plus 2 theta. 
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So, this is nothing but 2 cos k h, right, will you agree with me? Same thing here, this is 2 

cos k h and what we could do then? We could write there minus 2 theta cos k h and there 

is a G here, there is a G here, so I will have 1 plus 2 theta into G is on the left hand side, I 

will have P e minus theta and there is a 2 here cos k h plus 1 minus 2 P e plus 2 theta. 



So, this I could write it as 1 minus, well, we can write it 1 plus 2 theta, then I will have 1 

minus cos k h into G and on this side I could also get 1 here, and then I could write 2 

times theta minus P e, this will give me 1 and from here I will get cos k h. 

So, of course, this is 2 sign square k h by 2, so that is what you are seeing there. So, I am 

going to get, this is multiplied by 1 plus 4 theta sign square k h by 2. 

So, that is what you are seeing here, down below because p into lambda is theta, right? 

So, that is what you see, the denominator and the numerator is also, similarly, is written 

in terms of this. 

So, what you can notice is that this is also a bounded on the upper side by 1 because I 

can manipulate it and write it as 1 minus something. So, it is never going to be above 

plus 1, that is guaranteed for you. So, to guard against instability, all you have to worry 

about, that it should not fall below minus 1. 
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So, that is what we will have to do it and what you notice, that apart from the peclet 

number, now you also have lambda as a control for you or you can take the product of 

the two as theta as the parameter. 

And now, what we can do is, we can obtain the value of G and for various combinations 

of the parameters, ideally I could have done it in the three dimensional space; and on one 



side I will have lambda, another side I will have k h and on the third direction I will have 

the P e. 

But to make the things little more understandable, I will show you by slices. So, take a 

very moderate value, low values of P e, that is, about 0.01 and then plot the G contours 

in k h lambda plane; so, this is how you get. The interesting bit is, what is written on the 

top right corner, here is a range, range of values of G in the whole space. 
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If you now go back, look at this range, it is ranging between 0.96 and 1 and if we look 

back to our FTCS algorithm, you know I did not write it, but you can see that it had gone 

from 1 to some value here, almost 0, I mean, there is a 0 line and on this side we have an 

instability line, which had gone all the way up to have the last contour, that we show here 

is minus 70. 

So, you can see the dramatic transformation, dramatic transformation because this 

method was unstable in this part of the domain. So, even I am talking about Peclet 

number of 0.01, I would be looking at there, so it is quite o.k., it is quite o.k. that it will 

remain stable, no problem there. However, look at the value of G, this will take all the 

way from 1 to virtually lets say 0.2, 0.15, that kind of value. 



Whereas now by doing this implicit method, I could actually bracket that G between 0.96 

and 1, a tremendous improvement, right? So, this is what we get by migrating from 

explicit method to implicit methods in terms of numerical stability property. 
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Now, if I increase the peclet number by a factor of ten, so that is what we have done. 

From 0.01, we have now gone to 0.1 and what do we find? The range is still not too bad, 

it is still quite, it is between 0.6 and 1, it is between 0.6 and 1 and you can realize that 

this is the story for virtually this is your explicit method, will correspond to what? 

Lambda equal to 0. 
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So, you can see this is your explicit method and this is your fully implicit method and 

you can see that there is a significant improvement here that we do not go below 0.6, 

whereas in FTCS we could have gone all the way up to 0, right? And what happens if 

you take a much larger value of peclet number, that is of the order of 1, and then what 

you notice that finally you started seeing instability. 

So, now the range is gone from minus 3 to plus 1, so what I have done here? I have 

drawn that minus 1 line here, we have drawn a minus 1 line here, so to the left of which 

this region is your unstable region. 

So, if you take explicit methods for value of lambda below this critical value, what will 

happen? You have to worry about some values of k h which are going to be unstable; so, 

that is something you have to worry about. However, if you take value of lambda above 

this critical value, then you have a fully stable method for all the k h range that you have 

resolved with your grade ,so this critical value happens to be about 0.2506. 

So, all that you are able to see now that you can get a very very spectacular improvement 

in your ability to take much larger time step. See, this values of peclet number are few 

orders of magnitude, larger then what you can do with the explicit method. 



So, we are talking about improvement of the order of say 1000 times, 10000 times, that 

type of improvement in computing. So, this is what is all about the classical way of 

looking at parabolic equation and their computations. 

There is only one thing that I have not talked about, which I would like to tell you is, this 

is more from practicality point of view and not specifically related to parabolic equation, 

but in many computing problems, what happens is we come across conditions where we 

state that the variables are periodic in nature, so what does it mean? 
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When I say the very, the variables are periodic in nature, what we are talking about is 

that this values are repeated; so, whatever the value I have here, so if I call that as u 1 j 

that will be equal to say u n j. 

So, the function is repeating itself, that is what you shall do with your Fourier series 

analysis. If a function is periodic, then you say look this is my the wavelength, so it is 

going to be periodic like this and then we should be doing this. 
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Now, all that I am going to ask you now, to help me in writing down the discrete 

equation. See, the earlier what we had, earlier we had written b 1 x 1 plus c 1 x 2 equal to 

0 was the first line, so this was when we did not have any periodicity involved. So, I will 

call them as non-periodic problem. 

And the second line, add a 1 x 1 plus b 2 x 2 plus c 2 x 3 equal to 0 and so on, so forth. 

That is why you had that A matrix that when we wrote, I wrote b 1 all the way up to b n, 

then we had here c 1 all the way up to c n minus 1, there is 0 0 and what was your x 

vector x vector and x 2 x 3 all the way up to x n minus 1, that is what we had. 

Now, if I look at periodic problem what I am talking about? Now my unknowns, 

basically I do not have a deviational condition; instead, a boundary condition is the 

periodic boundary condition, that is what I wrote. 
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So, basically my unknowns will be what? If I have to write x vector, so I could start from 

x 2 all the way up to x n. Now, you see the difference because why did not I write x 1 

because x 1 equal to x n. So, I am just simply noticing that here the number of unknowns 

are n minus 2, here it is n minus 1, so dimension is bigger. 
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What about the a matrix? What will be the a matrix? Well I wrote something totally 

wrong, none of you protested, but let me write it as this r 1, r 2 and so on, so forth, so 

that there is a right hand side, right? That is how we got that implicit. 

So, now if I look at this, what did I do? I had a r 1 prime, what was r 1 prime? If you 

remember what I said? r 1 prime was whatever r 1 that I had, I also have a quantity 

called a 1, if I look at the point. So, if I have this as i equal to 1 and I am now writing the 

equation for what? I am, I am, I am writing the equation from 2 onwards, that is how I 

have catalogued the unknowns. 



(Refer Slide Time: 56:07) 

 

So, if I write the equation for 2, then I have what here? So, i, for i equal to 2, let us write 

one of the equation that you will appreciate. You are going to get u 1 j plus 1, that is an 

unknown, that is multiplied by a 1. Then I have b 1 u 2 j plus 1 and c 1 u 3 j plus 1 is 

equal to r 1. 

Now, what you are noticing that this quantity is not a derivational quantity, like, earlier 

we could put it on the other side, so what should I do now? Here I use the periodic 

condition that is given there, so I will write it as a 1 u 1 is u n. 

So, what has happened now to the a matrix? You can see that corresponding to the last 

entry I have a non-zero a 1, right? So, a matrix if I have to write it like this. I will remove 

this, so since you have noted is now, I will expect that you remember what we are doing. 

So, now, if I were to write down the a matrix, the diagonal entry still remains the same b 

1, then I have the super diagonal, what about the a 1 quantity? a 1 quantity is nothing but 

it will come here. 

Do you see that there are stacks of 0s? And then you have here, then of course once we 

are in the other line there is no such problem. Same way, what will be my last equation? 

The last equation - if you allow me to erase this part, so we are not talking about non 

periodic part is easy and done – now, if I try to write the last equation, well, what would 

be that? That would be a n, tell me, n minus 1 j plus 1 plus b n, well, r n. 



Now, this looks quite o.k. except the fact that what is this? Our unknowns are from 2 to 

n, so what is n plus 1 doing there, what is the meaning of n plus 1? It will be what? So, x 

n plus 1 would be some point here, some fictitious point here. Listen it, if I write it for 

this, this is involving all this three nodes, what about this point? This actually will be 

here because it is periodic.  

So, that is what we are going to do that I am just simply going to write the same thing, 

but here I will write c n x 2 j plus 1 is equal to r n. So, if I look at the last equation, then 

what we have here is that b n remains here and a n remains here and c n goes where? c n 

comes here because that corresponds to x 2; so, this is the structure. 

So, what we have here is a periodic tridiagonal matrix. 

So, in the next class I will just, tomorrow I will tell you how we handle periodic 

tridiagonal matrix. This is not exactly the replica of what we have done for non-periodic 

cases and this periodic problems are far too many for us to really understand and digest. 

O.K. 


