
Foundation of Scientific Computing 

Prof. T. K. Sengupta 

Department of Aerospace Engineering 

Indian Institute of Technology, Kanpur 

Module No. # 01 

Lecture No. # 16 

Today’s discussion on lecture 16 begins once again, by our discussion on Spectral 

Analysis tool. As we mentioned before, we would like to develop an analysis tool which 

is applicable for the full domain that would have different types of discretization for 

different points. So, in this context, we have already discussed in last lecture about 

equivalent wave number. 

(Refer Slide Time: 00:16) 

 

Once we have developed equivalent wave number, we are going to talk about 

consistency of discretization in terms of this equivalent wave number expression. Once 

we apply it to specific space time dependent equation, we can talk about numerical 

amplification factor. 



We have seen already that Euler time discretization with various kinds of central 

schemes are unstable; that is why we would move over to numerical amplification factor 

for 4 stage Runge-Kutta method because we have already talked about the requirement 

of single step method as oppose to multiple step methods. Once we have talked about 

space and time discretization together, we are in a position to talk about numerical 

dispersion relation. Once we have the numerical dispersion relation, we will show how 

phase, phase speed, and group velocity could be computed from this numerical 

dispersion relation. We will do it specifically with the help of 1D convection equation 

and show the power of this analysis tool by comparing different finite difference, finite 

volume, and finite element methods, one by one. 

We would like to bring one particular aspect of any discrete computing method. It is the 

existence of spurious upstream propagating solution and this is what has been called as 

Q-waves. So, this is something that we will be talking here, in great detail. This would 

basically conclude our discussion on discretization. 

So, having finished our discussion on discretization, we will basically start our 

discussion on various solution methods. So, we will begin by solving parabolic partial 

differential equation. In this context, we will adopt the heat equation as an example of 

parabolic PDE.  

We will begin our discussion of parabolic PDE solution method by theoretically 

analyzing the heat equation. Specifically, we would like to bring to your attention, the 

concept of physical instability versus numerical instability. That is why we need to have 

a former understanding of theoretical aspect of the solution. In this context, we may like 

to introduce an equivalent energy. Having done that, we will show that for a physically 

stable system, we cannot afford to accept numerical instability. In this context, we are 

also going to talk about consistency and accuracy of solution methods for PDEs. Then 

we should continue with our discussion. 

We are actually in the process of developing an analysis tool which is in the spectral 

plane; that is why we call this as a spectral analysis tool. 



(Refer Slide Time: 04:21) 

 

What we have been able to do is also analyze such a scheme in the full domain; that 

means, unlike what people have done earlier, people have developed methods where we 

could just simply look at the scheme - what happens in the interior. But you can notice 

here that we can find out effectiveness of discretization in terms of this k equivalent in a 

node-wise manner. So, for each and every j, I could evaluate this, the moment I decide to 

freeze upon the method of discretization through the choice of this C matrix. On the 

blackboard, we developed this. 

(Refer Slide Time: 05:22) 

 



We showed that if we take a second order central differencing scheme that gives k 

equivalent as sin k h by h. Then, from there, actually we drew a portrait of this 

effectiveness and plotted it in the non-dimensional wave number, ranging between 0 and 

pi. On this side (Refer Slide Time: 05:33) we plotted k equivalent by k and what we 

notice that k h going to 0. What we are getting here? k equivalent by k here would be sin 

k h by k h (Refer Slide Time: 05:52). So, that is your sin x by x and we know the familiar 

property of the function that it just simply decays to 0 like this (Refer Slide Time: 06:03) 

and this is your value 1. So, ideally, what you would like to have is that all scales are 

resolved exactly, but discrete method shows that it is scale dependent. Depending on the 

value of k, you have different effectiveness.  

What about this point? This point has to be equal to 1, why because this is the limit for 

which you are going from the discrete to continuum; h going to 0. If h goes to 0, then we 

reach this point (Refer Slide Time: 06:42). Then, by equivalent resolution, it should be 

exactly equal to the theoretical estimate. So, that is something that we have talked about. 

(Refer Slide Time: 06:59) 

 

Now, suppose you take care of this discretization of the first derivative in that convection 

equation, basically investigating this simple equation, we have seen what the second 

ordered discretization does. 



 (Refer Slide Time: 05:22) 

 

So, suppose you do it by fourth order central differencing scheme, that I think you would 

recall, this was the expression that we had written - u j plus 2 plus 8 u j plus 1 minus 8 u j 

minus 1 plus u j minus 2. So, once again we can calculate its k equivalent. You can very 

clearly tell me what this is going to be; k equivalent would be 1 over 12 h and from here 

I will get e to the power 2 i k h; so, I will get minus e to the power 2 i k h. From here I 

will get 8 e to the power i k h; from here, I will have e to the power minus i k h; the last 

one we will continue - e to the power minus 2 i k h. 

So, you can see, things do happen pair-wise. So, you have here (Refer Slide Time: 08:45 

to 09:36) appear with the opposite sign. So, you could club them together; each one of 

them will contribute 2. So, we could take this quantity out. So, this will be nothing but, I 

could also take i out. So, I will get here sin 2 k h from this and that and from there we 

will get 8 sin k h. So, this is the expression for i k equivalent. So, you can write k 

equivalent by omitting that i. So, you will get that and do a little bit of simplification and 

you will get this expression. 

So, what you find that the fourth order differencing is equivalent to the second order 

differencing quantity multiplied by this factor. This factor has a role to scale it up. What 

I mean by that is - if this is the figure that I have got for C D 2, for C D 4 I will get 

something like this (Refer Slide Time: 10:05). So, it says that I have a much larger range 

of k h, over which my representation is more accurate. 



So, this is the story with all explicit methods. As you keep on increasing its order, you 

keep seeing that this gives you better and better approximation. However, for all the 

cases, you would notice that this will go to 0 at the Nyquist limit. 

[Noise] (Refer Slide Time: 10:36) 

Yes. [Noise] 

Pardon. Here? plus and that is why this has given us this (Refer Slide Time: 10:45) 

maybe I should have a minus sign here; so, I should have a minus sign there too. (Refer 

Slide Time: 10:57) 

So, this is the story when it comes to discretization. So, what we are looking here is - 

what happens when we just discretize the special derivative term alone. Now, the story 

does not end there because what you end up doing is solving a particular equation where 

both space and time dependence come into play. 

So, if I look at this equation, what we are going to do is again represent the unknown in 

terms of Fourier Laplace transform. 

(Refer Slide Time: 11:54) 

 

So, I will write like what I did yesterday; U of k and t into e to the power i k x d k. So, 

that is the way we are going to look at it. So, as you can see - this term (Refer Slide 



Time: 12:20 to 13:20) will give you an integral dU by dt and this term remains as it is. 

This term will give us c by… this is a lower case c. So, I will write it like this. What did 

we write this as? In terms of if I am doing it for the jth point, I will write it C j l e to the 

power i k x l minus x j and l goes from 1 to n and this multiplied by u and the face part 

remains as it is. So, basically this is what we are getting from here to here via this 

spectral representation. Then, of course, it is true for the integrated quantity. So, the 

integrant itself must be equal to 0 and that is what you have it here. 

The top equation is essentially what we have done - remove the phase part; remove the 

integral part; I have here is this (Refer Slide Time: 13:57). So, I have dU by d t plus c by 

h and the C matrix operating on the projection operator times U and so a little bit of a 

manipulation will you get you in this figure (( )). 

(Refer Slide Time: 14:17) 

 

Now, in most of your computational activities wherever convection is involved, you will 

always notice appearance of this parameter which is shown here in that square bracket; 

this is a non-dimensional quantity. This is what is called as the Courant-Friedrichs-Lewy 

number or CFL number. So, just simply remember it as a CFL number. What it basically 

tells you is, a kind of a non-dimensional quantity N c which we will write and we will 

see that this is a fundamental independent variable that determines the property of the 

method. 



Now, having defined the variable in terms of its Fourier Laplace transform like this, we 

can define what we will call it as an amplification factor.  

(Refer Slide Time: 15:22) 

 

We will define it as U for that particular k, where we are looking at the solution at the 

advance time step divided by the solution in a k space at the old time step. So, in a sense, 

this is going to be a function of k. 

You can very clearly see that in the limit of continuum when we take delta x equal to 0 

delta t equal to 0, this G should be equal to 1; see easily, if delta t goes to 0, this limit 

goes to 1. What happens is a different story; we do a finite time step calculations and the 

moment we do that we deviate from its ideal value of 1. 



(Refer Slide Time: 16:51) 

 

So, in computation, irrespective of equation you will always expect G should be as close 

to 1 as possible. What does this mean? Look, if I have G greater than 1, what does it 

imply? It implies the solution is growing with time. So, I will call that as instability. 

Since this is an action of a numerical activity, I will call it as numerical instability. If G is 

equal to 1, then it is neither growing not decaying; I will call that as neutral stability. 

When G is less than 1, we call this as numerical stability. So, with time, the Fourier 

Laplace amplitude will keep decaying. 

There seems to be lot of misconception among for the practitioners of computing in the 

CFD community. I have noticed, time and again people tend to always think that you 

must have a stable of algorithm; nothing can far from truth. As you can see from the 

definition here, G should be equal to 1 and it does not matter what equation you are 

looking at. When I come to discussing parabolic partial differential equation, I will 

specifically pose a physical problem and I will talk about its physical instability and then 

relate that with the numeric. 

However, irrespective of any equation that you are looking at, this is what we want. We 

should always aim for neutral stability; that is our ideal limits. Please do download this 

paper; this will have all those discussions given little more in detail (Refer Slide Time: 

18:56). 



So, what happens is - once I have written it down like this, now suppose I perform a 

Euler time integration, so far we have been silent about what we are doing with the time 

integration; let us say I am performing a Euler time integration on this term. 

(Refer Slide Time: 19:27) 

 

So, what I would do? I would write it as u of k t plus delta t minus u of k and t divided by 

delta t. 

Then, you can see, this is the outcome because there is a U sitting out there. So, I could 

pull it out and I get dU by U equal to minus of this N c times this summation over this 

factor (Refer Slide Time: 19:49 to 20:18). What happens as a consequence, if I divide by 

U so this divided by U of k and t will give me G; so G minus 1 will be equal to this 

factor; so G will be equal to 1 minus N c into this factor.  

What does it tell us? I have been telling you for a long time that this is a potentially a bad 

method to do Euler time integration. Why? You see, the C matrix is going to be of real 

entries. The way we discretize, you have noted various methods; some of them you have 

seen. C is a real matrix, but this phase function is complex. So, what we can do is I can 

take a modulus of this G and immediately you will notice that this is greater than 1. So, 

this modulus of G is greater than 1. What does it mean? That is an unconditionally 

unstable method. 



So, you look worried. Tell me, you have any confusion? Let us work it out. So, I have 1 

minus N c and this C j l and this will be cosine k x l minus x j plus i sin k x l minus x j. 

You can see this. So, you can see the real part 1 minus N c (Refer Slide Time: 22:17) and 

you have the imaginary part which will be nothing but…(Refer Slide Time: 22:28). Now 

can you see what I said? 

So, you are now convinced that this modulus will be greater than 1 and that makes Euler 

time integration very undesirable; it will lead to instability. So this is that. What are the 

other better methods that we have? 

(Refer Slide Time: 23:04) 

 

Let me tell you for some of the time integration methods that we have investigated, we 

have developed ourselves, we find this is a prime candidate which gives excellent 

property and this is your 4 stage 2 time level Runge-Kutta method. 

So, let me explain how this method works and how this method is better in terms of 

numerical amplification factor. Suppose I have a space time dependent equation. So, I do 

all kinds of spatial discretization; put all those terms on the right hand side and call it as a 

L operator; so, that determines all yours spatial independence. Then, we have this kind of 

an evolution equation del U by del t. Well, please forgive me, this should be a lower case 

u; this is not that capital u; it should be lower case u. 



So, del u by del t is equal to L of u. By now, all of you are familiar; we have already 

done it when we were looking at solution of ODEs. In the 4 stage Runge-Kutta method 

we performed these 4 stages, having started with the solution at the nth level. We find 

out an intermediate stage solution which we call as u superscript 1. Having obtained that 

use that to calculate this function L of u here, and then, from there we calculate the 

second stage function U2; then we have the U3; finally, we collate all these intermediate 

stages into the next step solution that is u n plus 1. This is all there in your notes. 

So, in fact, you can notice that one of the brackets has gone wrong, up in the stage 2; 

anyway, 2 and 3 there is something wrong. So, basically, let us see what happens when 

we in corporate our spectral description and try to get the value of G for this particular 

time integration method. 

(Refer Slide Time: 25:19) 

 

So, coming back to your 1D convection equation here (Refer Slide Time: 25:34), I can 

put this on the left hand side. If I do this, this quantity is nothing but your L of u that is 

your L of u for this. Now, we have also said that numerical description of the derivative 

with respect to x; we could write it like this. So, if I write delta t times, there is a c out 

there and times del u del x, we are going to get this. C is there, delta t comes when I 

multiply. As you can see in the previous stage, every stage I need to multiply by delta t 

here. So, here you can see, there is a delta t by 2, delta t by 2, and so on and so forth. 



So, delta t is part of the story. So, we get once again that factor c delta t by h; that is what 

we called as the CFL number or N c. So, c delta t by h, we keep it up front here as N c. 

Then, this is what we have done. This P j l is nothing but this quantity e to the power i k 

x l minus h j; I have just simply economized on space by writing that. Then you have to 

have the Fourier Laplace amplitude U k of t and integrate over all possible case that is 

what you get. So, again let us economize in expression and call this whole thing here N c 

times this summation C j l P j l; let me call that as A of j. 

What does the subscript j imply? j implies that we are looking at the phenomena at the 

jth node. So, that is what we are doing. Having done that this is our first stage. u of 1 is 

obtained in terms of the starting A point u n times this part. That is what we have to do 

and that happens to be minus A j y 2 and this quantity. So, u n itself is U k t n e to the 

power i k x j. So, the whole thing can be written like this. So, I could write u of 1 as 

some kind of Fourier amplitude, capital U of 1. That capital U of 1 is nothing but 

evaluated at t n times this 1 minus A j by 2. 

So, this is the way that I will describe the first intermediate solution either in terms of 10, 

or in terms of its Fourier amplitude by this expression level. 

(Refer Slide Time: 28:23) 

 



Now, we go to the next step. The next step follows in a similar manner because what do 

we do there? We take u n minus delta t by 2 into L of u evaluated at the previous 

intermediate stage U of 1. 

So, that is what I could do. I could write it in terms of its Fourier amplitude, capital U of 

1. Again, this gives me capital U - this quantity, but U of 1 we have already written down 

as U into 1 minus A j by 2, but there, this is up front factor A j by 2; so, that comes in 

here. So, the whole thing works out like U of k comma t n 1 minus A j by 2 into 1 minus 

A j by 2. So, basically this whole quantity minus this space path is the Fourier amplitude 

for the second intermediate solution. 

We proceed and obtain the third quantity, the third intermediate stage that is u n minus 

again this is delta t. See, in U1 and U2, we have delta t by 2; U3 we have delta t; so that 

is why we have just A j; otherwise, previously you were getting A j by 2. So, U3 is u of n 

minus A j into U of 2 into this. U of 2 is in front; you plug it in there; this is what you 

get. So, that explains to you what this U of 3 is. So, this is an expression that helps you 

explain everything in the k plane. 

(Refer Slide Time: 30:13) 

 

Now, having obtained all these quantities U1 U2 U3 etcetera, you put it in the final 

collative stage where you get the solution at the new level in terms of the older value; 



this is what you get; do a little bit of algebra and you get this. So, we get 1 minus A j 

plus A j square by 2 and so 

So, what we get here for this RK4 method is this and as you can see, this A j itself was a 

function of N c and those P j l etcetera. So, that brings in the non-dimensional wave 

number, here k h and N c; so, this G j is going to be a function of k h and N c. Please do 

remember that A j’s themselves are complex; so, G j also will be complex. What it does? 

This sort of operation with G j will not only amplify or attenuate, but it also will provide 

you with a phase shift. So, if I have a real quantity and an imaginary quantity, I can write 

it in terms of modular time step e to the power i phase. So, basically every operation or 

every time step would be equivalent to multiplying this previous time step solution with 

the amplitude plus a phase shift. 

Now, you would be interested to know that what kind of a phase shift that you are 

getting? Because in solving this equation that we have started with, mainly the 1D 

convection equation, the solution is very straight forward. 

(Refer Slide Time: 32:16) 

 

The solution is, as if you recall, we would write it like this - if I write in terms of… not in 

terms of k and t, but let us say, now in terms of the frequency itself if I write, if I 

introduce frequency, then what will happen? Then, I will have e to the power i k x minus 

omega t and d k d omega. 



So, that is what I will get and you can see the phase path. The phase path is i k x minus 

omega t. So, if I take k out, I will get x minus c t. So, here actual solution shows the 

phase 2 change by this expression x minus c t. if I give you a solution at t equal to 0, at a 

subsequent time, you have the same solution, but it is shifted by c t to the x minus c t. So, 

this is a kind of a phase shift.  

Now, I want to know this G that we have uncovered here, for this RK4 method in 17. 

What does it do? How is it related to the c that we are looking for in the exact solution? 

(Refer Slide Time: 33:56) 

 

To understand this, I have demonstrated here, what happens. Suppose, I start from the 

initial solution which is given by the initial spectrum, A naught of k times e to the power 

i k x d k, then, I am looking for the solution at the first time step delta t; that I will call, u 

of 1; please do not confuse it with the first stage of RK4; this is what I am talking about 

time integration going from u 0 to u delta t; so this is your u delta t. That would be 

equivalent to multiplying by G of k; that is the definition of our amplification factor.  

Now, this G of k itself I have written here in terms of modulus and time, say phase shift. 

What is this phase shift? It is nothing but tan inverse of G imaginary by G real with a 

minus sign upfront. 



So what happens is, I could then write this u, the solution at delta t would be the initial 

spectrum times the modulus of the amplification and e to the power i k x minus beta j. 

Why do I write j? Because each and every point will have a different phase shift; that is 

what we have developed through this matrix theory that we can obtain this point wise. 

So, that is what we conclude here, that every step of time integration shift the phase of 

the solution obtained at the previous step, by this amount minus beta j. 

One needs to ensure that this phase shift is according to the exact solution; we need to do 

that. So, suppose I perform n such steps, I have arrived at the solution at the nth time 

step; that would be again given by my initial spectrum. 

There is a mistake. This G j of k, there should be a power n because every time I get 1, if 

I am doing n steps, there is n missing here. Please do understand that there is a mistake. 

Please do not quote me later that your note was wrong and that is why we have done it 

wrong. 

So, what I am saying that you will have G j of K this has been operated n times. So, this 

exponent (Refer Slide Time: 36:27), this is not a superscript and then I have the phase e 

k. So, if I am doing this, every step I am getting beta j; so, I am going to get minus beta j 

this times d k. So, this n is missing there. So, please do note there correctly that this is 

incorrect variable. 

(Refer Slide Time: 37:01) 

 



Then what happens? Now, having obtained this expression, you notice - compare this 

with this here (Refer Slide Time: 37:10). If I look at this phase relationship, with this 

phase relationship, I can see something emerging; this beta j is somewhat related to this 

omega here. 

(Refer Slide Time: 37:24) 

 

What is n? n is nothing but the time step. So, that will be like your t n by delta t. So, what 

happens then? n times beta j that is what we are seeing here,; that is going to give me 

something like this - i k c t. 

So, I will write that as, there is an i here also and n beta j should be equal to k C t, if 

everything was fine and nice. However, we have already seen that doing discreet 

computation means sacrificing something. What is that something? k is still our 

independent variable. So, we are keeping that as our point of reference. We are going to 

see that this C which was to be a constant in the exact solution numerically does not 

remain so; it does not remain so. 

So, if I replace this n by what I have written there - t by delta t, then you can see this t 

will cancel and what we are finding here? An expression for C N - that is nothing but 

beta j by k delta t. From the exact solution, we have noted omega equal to k C. So, this is 

our exact solution. But numerically what we are doing? k still is the independent 



variable; C does not remain the same; this also, this is your numerical dispersion relation. 

See, we are relating omega with k. That is what we define. 

At this stage it may appear it is a very simple thing. Tell you what that people have been 

doing things wrongly for decades? Including us, as you can see here, it started with 

professor Trefethen’s work in 1982; then Lele Colonius also and this professor Eswaran 

from mechanical copied our work wrongly and they also ended up doing wrongly. 

So, what you understand here is that your independent variable is k. What was the 

mistake people we are doing wrongly before? You know what people we are doing 

wrongly before; they were just simply writing omega N as what we have done in the 

beginning of the class, change k to k equivalent, and then say multiply by C. So, this is 

wrong whereas, this is the correct way of expressing the dispersion relation (Refer Slide 

Time: 41:31). 

What does it mean? I mean are we just simply nit picking? No. It is very profound 

because what we are seeing here is that this C N is now a function of k, whereas in your 

exact solution, C was a constant. That is why we talked so glowingly about that say non 

dispersive, non dissipative solution. Here, what we are seeing is an act of discreet 

computing. We are getting a numerical phase speed C N which is a function of wave 

number. So, that means what? Different k component will send their crest at different 

rates. So, this is really a big development which was first pointed out here. Well, we 

have tried to convince people with most of publications there, as you have noticed. 



(Refer Slide Time: 42:40) 

 

Continuing about discussion that C N is not equal to C is really profound in terms of 

error and stability analysis; there is a nice history about this. When during the Second 

World War, this group of people was in the Manhatten project in New Mexico 

developing the atom bomb. One of their main Stalwart mathematicians helping them was 

Von Neumann. 

Von Neumann actually developed an error analysis or stability analysis. This was based 

on this assumption, a wrong one (Refer Slide Time: 43:30). At that time during the war, 

people are secretive about was goes on in research front; they classified the work; so, 

people did not know what was the work, but everybody knew that Von Neumann has 

done something which revolutionizes computing; explains a lot of features of computing. 

So, it was only I think in 1947 and 49, some papers started coming out, but as you can 

realize, that work was wrong and we actually first brought it out. We corrected Von 

Neumann’s error; that is the main thing about this work. 

What we notice out of all these exercise? I have got an expression for C N. So, what I 

could do? I could define a non-dimensional quantity which I will call c N by c. So, that 

would be beta j and I will have k c into delta t. k c is omega; so, beta j by omega delta t. 

So, that is what we have written here in 21. So, this is your consequence of numerical 

activity that you do not see c N by c equal to 1, but it becomes beta j by omega delta t. 

So, what happens? 



So, you choose a method for spatial discretization. You choose a method for temporal 

discretization. You obtain the value of G which has a real path which has an imaginary 

path; you find out what is the imposed phase shift from this G, and that determines how 

far it is for one. Having given you this expression here (Refer Slide Time: 45:33 to 

46:08), you can immediately calculate its numerical group velocity, which I will call as 

V g N, which will be nothing but d omega N d k. So, if I plug that in there, I will get this 

equal to c N plus k d c N by d k. If everything was nice and fine, you should have seen 

that these two should have been the same; V g equal to c that is an exact solution. 

But the very fact that numerical calculation makes C N non constant function of k, adds 

on this part that is the source of numerical dispersion. In fact, lot of calculation goes on 

in the literature, where people do claim that they have done this and that; they are 

essentially source of this Fourier’s dispersion; that is inherent with all numerical 

methods; you cannot just simply wash them away until unless you choose your methods 

and parameter very carefully. That also tells you that at this point in time with the type of 

computing power that we have, we cannot solve the equation in a direct sense. We will 

always have to leave some kind of error. 

(Refer Slide Time: 47:12) 

 

What is the error? How this error is contributed? As we go along, we will explain more. 

At this point in time, I will show you some results. 



This figure may not make tremendous sense, except that in this figure what we have 

done? We have plotted these G contours; that modulus G that we talked about; the 

method in the second figure that we have is a CD2 method along with RK4. We have 

marked the region here with dash line where, your G is mod G is 1. 

Recall, I wrote down that to do a correct calculation we must have neutral stability. So, 

This have been plotted in this plane; on the x axis I have N c - the CFL number, on the y 

axis I have k h. It tells you that to do an error free calculation coming from numerical 

amplification consideration, you need to keep your delta t very small; that means N c 

very small, so that you remain in the numerically neutrally stable region.  

There are other methods. I will talk about these methods, but just simply know that this 

is the finite volume method, this is the finite element method, and unfortunately, neither 

of these two methods which are very popular very much in use; may be tens of, 

thousands of people use.  

Then, as you can see, they do not have any G equal to 1 region. So, all they get is lot 

of… well you have solutions here; this is G equal to 1 line here; on this side, you have 

totally damp solution. So, as you keep integrating, your solution amplitude will come 

down; on this side, you have unstable path - this pocket. The same thing happens here 

with this finite element method called Petrov-Galerkin method; some of you may have 

taken a course; you know what it is; what you notice that G equal to 1 line is here. On 

this side, it is a completely damped solution, and on this side you have amplified 

solution. So, this is about the story of G. 



(Refer Slide Time: 49:46) 

 

You need to also know, what the numerical dispersion is. We have talked about this; b G 

n by c; so, if we plot that again in N c at k h plane, we notice some very interesting 

feature. Let us keep our attention focus once again on this second figure because that is 

what we are quite familiar with now. We noticed that that V g N by c - this contour line, 

I suppose this line is 0.98. So, basically, even if you look at very small range of k h, here 

you are already started getting 2 percent dispersion; instead of 1, it is 0.98. This line here 

corresponds to 0.98, but interestingly enough, look at this line that is a very fascinating 

and interesting line that is V g N by c equal to 0. 

What does it mean? Below that line, you have V g N by c positive; above it is negative. 

The equation that we started solving, solution should have propagated from left; if c is 

positive it goes from left to right. If my numerical dispersion relation is such and I am in 

this part, solution will go in the wrong direction. 

This feature is vaguely understood, but this is where we have actually quantified it and 

put them across for different types of methods currently in use. This is one of the 

methods that we have developed. You can see that this value is actually pi by 2. So, for 

any k h value which is greater than pi by 2, they will go in the wrong direction. Since 

these are not physical waves, somehow this nomenclature has stuck this type of spurious 

solutions are not called p-waves, but q-waves. So, q-waves means spurious upstream 

propagating solutions. 



As you can see, almost every numerical method has this kind of a feature. So, you cannot 

just simply say that I have 1 method superior to other; in fact, the case for finite volume 

and finite element is really pathetic because they not only attenuate the solution, their 

dispersion relation property is also equally bad. 

So, I think we would conclude here. I still have not told you about the error analysis path 

which will come little later. 
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You please download this paper and then I will come back shortly, but let me now go to 

the next topic that we would like to discuss. 
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That is basically going back to classical thing that any computing course tries to teach 

you - how to solve different types of PDE’s. So, let us begin with parabolic PDE’s 

because that is how historically it all began. 

Well, once again with our formal practice, we start with some given equation. So, let us 

look at say 1 dimensional heat equation in a domain, finite domain x, varying between 0 

and 1, and for all time we want to get the solution. It is a space time independent 

solution; so, you require an initial solution here; that is given by this function f of x; in 

addition, it is a bounded domain problem between 0 and 1; so, you need to prescribe 

boundary conditions; the boundary conditions could be time dependent; so, that is why 

we have written them as p of t and q of t. 

Now, we have already studied that. We know that the characteristic is t equal to constant; 

that is how the information propagates. 
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Now, we would like to first discuss, what the property of the physical solution itself is 

for very large time because if I do not know that then I do not know what I am 

computing; so, first and foremost, I would like to know what the solution is doing. To 

understand that we define a quantity - a non-negative, functional, which I represent as 

energy. So, let us call this capital u of t as u square dx. So, this is a positive function. 

We want to find out how this quantity changes with time. So, what you do is you have 

the definition, differentiate it with respect to time; then you will get u; del u del t is u x x; 

so I have got this; then I can do it a little jocularly here and that is what I am going to get 

del x of u u x minus x square. So, if I do that this is exact differential. So, I can integrate 

it out. With the help of those boundary conditions at x equal to 1 and x equal to 0, the 

first part gives me these two solutions; whereas, the last path, I keep it as it is; that is 

minus of u x square dx. 

Now, many a times, most of the times when you have thought this, any of these 

equations, especially the heat equation, you have most of the time told - let us look at 

something; we give some initial temperature distribution and then see what happens. So, 

there is nothing from the boundary. So, if I do that this p of t and q of t are 0; then this 

part is not there; then what happens? I have dE by dt is equal to minus of dx. So, it is a 

strictly negative quantity. So, what does it say? That if I do not do anything through the 

boundary, then the energy is going to decay with time. 



So, that is a very nice feature of a physical solution. We do not like to consider a 

physical case where energy grows unbounded. There would be such problems of 

physical instability, but that is not what we have talked about. Here, we are talking about 

a benign case where, solutions do not block. What it shows? If I have a rod, I create 

some kind of a heat; heat distribution at t equal to 0. 
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What happens subsequently? It says, where you look at the solution, the energy will 

continuously keep coming down. However, you can realize by a judicious choice of this 

function p and t and q and t, we can do lot of interesting things. 

So, in the second part, I will show you some interesting thing that we have done very 

recently. To show you that even for this parabolic equation, heat equation, you can 

actually generate wave solutions; we will do that but later.  

So, we have realized that when we do not have any boundary excitation, the energy of 

the system decays with time. So, it is a basically physically stable system; then one 

should be able to compute it indefinitely; there should not be any problem until unless 

your method is wrong. 

If your energy increases with time, then we have physically unstable system; you cannot 

compute it. You will see that other physical processes will intervene and you will never 

get a situation where solution goes unbounded because some of the energy has to come. 



Various processes like what we studied in case of solitare, you realize that there was this 

competition between focusing and dispersion - that got us a steady state solution. 

So literally speaking, in physics, you will never come across a continuously unstable 

system; it will be unstable, but then it eventually saturates because of other processes. 

However, coming to our numerical stability requirement, we need the energy of the 

physical system to remain bounded; not only that we also need these two quantities 

which would make sense; we need the solution to be accurate and we need the method to 

be consistent. 

See, we have defined something like this - the energy is going to decay with time. I will 

introduce you to a method which was introduce it lot of fanfare and people actually used 

for nearly 30-40 years; even you can go to the search engine and find that there are still 

some people using it this method called Du Fort-Frankel method. 

What happens? It does not follow the principle of the physical solution. Such methods 

are called inconsistent methods. So, we must be concerned about consistency. So, I think 

it is a nice place to stop here. 


