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First of all, let us talk about the scope and syllabus of this course titled Foundation of 

Scientific Computing. 
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This is offered as a science elective course to our third year and final year undergraduate 

students. No specific prerequisite is necessary for this course other than exposure to courses 

which are given to our first and second year students on Calculus, ordinary differential 

equations, and partial differential equations. Students at IIT Kanpur usually take an 

introductory course on Computing, which is however not related to scientific computing, the 

subject of this lecture series. However, I must emphasize that any new material that will be 

taught in this course will be done so very thoroughly and for that, there is absolutely no need 

for any book or monographs.  
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Now, going to the details of the syllabus for this course, we will begin by talking about basics 

of computing. We will thereby talk about discretization of governing equations and 

associated numerical errors. As usual, we will start with computations of ordinary differential 

equations and since some of the students may be familiar with it, we will introduce what is 

known as stiff differential equations. These are a very important class of problems and they 

need to be handled with care because this depends on parasitic error growth.  

Solving stiff equations is performed via various routes. Here, we will just briefly mention 

about orthogonalization but spend a little more time on a new method which has come up 

over the last 30 years or so. It is called the compound matrix method. Once we are through 

with this, we will also talk about various two time linear methods of non-stiff ordinary 

differential equations and then, we will move on to classification of governing partial 

differential equations that one encounters in scientific computing.  

We will see that these equations are classified into parabolic, elliptic, and hyperbolic 

equations. One of the interesting aspects of scientific computing is irrespective of whatever 

class of equations we solve, we computationally handle it as if we are treating the problem as 

a parabolic or hyperbolic equation and in that respect, wave mechanics is a very important 

issue that we should be talking about. There are two types of waves that one comes across: 

one is those governed by hyperbolic partial differential equations and the other one is called 

dispersive waves, which are governed by anything other than hyperbolic PDEs. All these 



waves are basically governed by dispersion relation. That actually in essence means how 

space and time variation is governed by these equations. This is an important concept. So, we 

talk about web mechanics in quite a bit of detail. Next, we will move on to finite difference 

methods, talking about discretization of spatial derivatives via polynomial expansions or by 

operator notations. In this regard, we will be talking about explicit central methods as well as 

upwind methods.  
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Once having done that, we will systematically go over to discussing about parabolic 

differential equations and in this topic itself, we will introduce explicit and implicit methods 

of solving differential equations. Once this is done, we will move on to elliptic PDEs. In this 

method, we basically talk about the classical iterative methods which will actually in essence 

treat this elliptic partial differential equation in a parabolic framework. So, we are coming 

along in that sequence.  

We will also talk about what is known as alternating direction implicit method or ADI 

method. This was quite popular about 40–50 years ago, though it has been overtaken by other 

methods. One of the newer methods we will include in this course is called the multi-grid 

method. This is a huge area of research which can actually cover a full course itself, but we 

will just simply introduce the scientific aspect of multi-grid methods. Having solved the 

parabolic and elliptic PDEs, we will naturally move over to hyperbolic PDEs and while doing 

so, we actually introduce the spectrum theory of discrete computing because many of the 



ideas of computing have evolved while performing stability analysis of partial parabolic 

PDEs but essentially, the error is governed by methods or equations which propagate the 

error as waves. That is why we emphasize quite a bit of our time on wave mechanics.  

While talking about stability analysis, we will specifically talk about the theory of signal and 

error propagation and once again, we will talk about dispersion relation preservation 

property. We want to thereby highlight that the space-time dependence of exact differential 

equation and numerical methods must be close to each other; that is what is meant by DRP 

property.  

Now in this context, in solving hyperbolic PDEs we will be talking about convection 

equations, one-dimensional convection equations, we will also talk about refraction and 

diffraction of mechanical waves. We will talk about this with respect to surface gravity waves 

that one sees in the treatment of water waves by linearizing and treating it as an inviscid flow 

property. Subsequently, we talk about how these surface gravity waves are affected by 

dissipation and nonlinearity. In that context, we will be introducing the students to Soliton 

and a special class of periodic waves called cnoidal waves.  
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Having done that, we are in a framework where we can talk about how to design high 

accuracy, high fertility computing methods. That would involve severe control of errors. We 

can pose this itself as an optimization issue. In this context, we will talk about near-spectral 

compact difference methods and it will occupy quite a bit of our discussion space. Now, 



while talking about spectral analysis, we will introduce the effect of nonlinearity in 

computing. That brings about aliasing problem and also focusing of error. We may be already 

familiar with the effect of nonlinearity in compressible flows where discontinuities come 

about in terms of shock waves and associated Gibbs' phenomenon.  

Here, we would like to talk about one particular topic which is very specific to computing. 

This is called spurious propagating waves which are called q-waves; this is what we will be 

talking about. Having exhausted various topics of finite difference methods, we will move 

over to finite volume and finite element methods and systematically compare these methods 

with finite difference methods. We will basically keep our attention focused on propagation 

problems because that is what is important in scientific computing. I think this will more or 

less finish all the available time that you have over this semester. We would like to basically 

give you some information about textbook and references.  
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For this course, what we are going to do is we are going to record the live lectures given to 

the students here for this course on Foundation of Scientific Computing. It is a science 

elective. So, it is not necessarily a compulsory course; those who are interested opt for it. 

Most of the material can be found in the following references. Number 1 is a book that was 

written sometime ago by me, although it is not really up today.  

The good news is that all the chapters of these books are available on Google Books for free. 

So, there is very little effort one has to pay in downloading these materials. Also, of course, 



all the slides that I am going to show to you during teaching should be made available to the 

students of this course. I would also like to point out that there is a book on Fluid Mechanics 

by Professor Kundu and Cohen. There is a paperback Indian edition available for now and if 

anyone is particularly interested in reading materials on waves, this is an excellent book; I 

would wholeheartedly recommend this. Well, a warm welcome to all of you. Beginning of 

this semester; I suppose this is the first class. We have assembled here to talk about 

Foundation of Scientific Computing. 
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The course number is SE371. That is me. You could look at me here.  
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This is the way to contact me anytime you need to. Those are a couple of my e-mail ids. You 

can call me on internal numbers on 7945 or 7253. There are no fixed contact hours; you can 

just simply call me and drop in. Since I will be busy teaching couple of courses in the 

morning half, it would be preferable that you look for me in the afternoon. Do not bother 

about this URL but the next one, you should please make a note of it. This is a course URL 

we have set up on a server called spectral.iitk.ac.in.  

We will load some material from time to time on this. I do not wish to keep it permanently, 

maybe for a week or so and then, we will download it. As far as the grading and exams are 

concerned, it is fairly straightforward. It will depend mostly on your mid-sem and end-sem; 

that should account for 80 percent of your total grade. Well, of course, do some projects. That 

should take care of that. 

Now of course, when we talk about a subject like this, Scientific Computing, nothing could 

be said more eloquently than by what Mark Twain had said: fascination with science always 

yields some dividend and one could come out with fantastic amount of returns. Let me also 

tell you that scientific computing is not the type of computing we talk about, which you do 

using a commercial software bought in the marketplace.  

To take the analogy to an extreme, it is almost like comparing astrology with astrophysics; it 

is the same thing here. Scientific computing is distinctly different from the so-called 



engineering computing that you do from those software in the market. So that is why let us 

probe a little bit more about the relationship between computing and science.  
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I just quoted this paper from Nature. It appeared a few years ago, talking about what would 

be the state of art as far as computing is concerned in the year 2020. I do not know why 

people get this fascination for 2020. Everybody writes about 2020. It has probably something 

to do with short-sightedness; people want to keep that way. Well, let us look at how science 

is improving. Science is becoming less reductionist. What exactly do we mean by that? This 

is that cause-effect model that we usually talk about: we have a definitive cause and we see 

an effect. That is your reductionist approach.  

However, we see all kinds of systems around ourselves which are far too complex. To model 

those complex systems, we need to have a different approach. That is what we call as the 

integrative approach or inductive approach. That means that we are just no more content in 

visualizing systems by constructing abstract models, simple models, paradigms, and 

concepts; what we instead like to do is bringing in the complexity of a real-life system and 

that is what we talk about when we say we are going from reductionist to integrative.  

So, in that particular aspect, this statement is very cogent here. If we look at what we are 

going to do with applied computer science, we should play the same role that the 

mathematicians have been playing for two–three centuries, basically providing an orderly 

formal framework that will help us explore newer avenues for understanding science. So, we 



are just taking it to the next higher level. What theoretical tools cannot deliver, we aim to 

deliver some of them using computing.  

Then, we will go from models to actual dynamical systems and when we are talking about 

dynamical systems, most of you are familiar. You have a transfer function that characterizes 

the dynamical system. You have input and then you get definitive output. The only thing is 

this dynamical system is not as simple as what you may have done in your Basic Electrical 

Engineering courses; it is going to be lot more (( )) the main dynamical system by itself may 

consist of many, many sub-systems and the input also could be multiple.  

Think of a very simple example. For example, when we toss a coin, it is such a simple event. 

Even today, we cannot model it because of multiple inputs and because probably our model 

that we try to look at is not rooted to a simple system that we are used to seeing, a mechanical 

system governed by Newtonian law. So, what happens is basically that is why we resort to 

statistical tools. We cannot model the system. If we cannot do that, we incur some error. 

When our model itself is faulty, we call such error as the process noise; we do not even know 

enough about the process itself.  

Then of course, you have the problem of modeling the input and finally even the 

measurement of output; measurement noise also plays a major role. So, when we take care of 

all of that, we actually go to our integral dynamical system approach. In the context of the 

present day, what we can do is we can fall back upon calculations which have to be very high 

fidelity calculations and we should draw tools from advancement arising in hardware, those 

arising from software. We could come out with better algorithms to solve the actual problem 

and all of this should also be supplemented with improvement of our theoretical model itself.  
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So, in the ideal scenario, computational scientists should know the principles, the way the 

information is handled inside a computer. That is rather important because you are looking 

for advancement; you should know how the data are put in and how they are handled. 

Moreover, one should also know the scope or limitation of the simulation itself. We have the 

general tendency to treat this as a black box system. So, we tend to shy away from knowing 

the nuts and bolts of what constitute those modeling tools. That should not do; if you want to 

contribute significantly and meaningfully, it is quite likely that you need to really know how 

this whole black box is working so that you can yourself contribute to its improvement. That 

means actually to know how to write large codes and how we test them in a modular manner.  

These are not like the operating systems you buy; they keep on adding patch over patch and 

today, whatever operating system you have if you try to put it in a computer of 10 years ago, 

the memory will not be sufficient because that is a very faulty model of developing, even the 

operating system that we are saddled with. Now, drawing the analogy again, computational 

experts should view themselves as mathematicians like the way we see them functioning in 

different branches of science. At the same time, the theoretical scientists also should be 

conversant with computational techniques because then only, they would be able to 

meaningfully contribute and this synergy will of course take us to greater heights. So, we 

basically need scientists trained in these advanced methodologies.  



The challenging problems that we find out in science should help us focusing and motivating 

our research in computing. You have seen some such benefit already accruing in the field of 

sensor network, data mining, data integration, grid computing, and cloud computing; you 

have a whole host of new branches coming up. 
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These are some of the things you can see where scientific computing can go – all the way 

from atmospheric science which has a very definitive history on fixed development to new 

subjects like genomics, which are probably only 20 or 30 years old. We have seen that in 

real-life situations, an integrative system-level approach will be sought. These are already 

being seen enacted in fields like biology, climate, ecology, earthquake prediction. They all 

essentially depend upon large computing resources which are distributed in nature. We will 

talk about distributed computing, a brief introduction of it.  

This is one prediction that in the year 2020, we should be looking at complex ecosystems 

with millions or even billions of computers which will be called tiny motes or nodes or pods. 

They would be deployed to track complex systems. However, having said all this 

inspirational talk of we should be doing, what we are doing currently also leaves us some 

room to probe further and I am not talking about Conspiracy Theory. This is what George 

Orwell said: that within any important issue, there are many more other issues which people 

are reluctant to talk about. So, we will be talking about some of those issues and find out 

what is a better way of computing and we will set the thing. 
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Now, this is a lighter aspect of computing. We all see from time to time that there is intense 

competition among diverse groups saying what they can do with computing and they 

generally use the word supercomputing. We never made out what really supercomputing is 

because these are the kind of diverse activities being claimed. For example, people talk about 

aerodynamics of Pringles and this is taken from a CNN site which talks about Pringles potato 

chips.  

The story is that it is not really potato chips. How many of you know that? It is all synthetic 

savory, it is an industrial product. If you look closely at the content, you will find out that it 

contains less than 50 percent of potato flour; the rest of it is different types of ingredients. So, 

it is really not potato chips, but then people are making a big hoo-ha about it on a popular TV 

program saying that we need to know the aerodynamic features of this chips because they are 

going on a conveyor belt and we do not want them to fly off. Such a noble goal, huh?  

Well on the other extreme, people have been looking at some real esoteric activities like 

creating a computer playing… sorry, the chess-playing computer. This began way back in 

1956, I will give you a little bit of milestone shortly, and it took 41 years when a computer 

was really able to defeat a grandmaster. So, Garry Kasparov will be remembered among all 

the grandmasters for this dubious distinction. 
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So, this is how it all began in 1946. The first computer was called ENIAC – Electronic 

Numerical Integrator and Computer. What was it doing at that time? Of course, war had 

ended but the preparation never ceases about fighting war. We always like war, right? So, 

people are looking at application in ballistics and then of course, better wind tunnels, to 

design deadlier aircraft or maybe even benign peaceful uses.  

This is one thing that we always give credit to – this group of people who have been ((.)) do 

almost an impossible job, that is, weather prediction. So, they were trying to do better 

weather prediction and look at their success rate. To predict 24 hours of weather, they had to 

run the code for 24 hours. So, it is concurrent information processing. You look at the output 

and look out of the window and see what is happening, are you calculating it properly. That is 

a joke because talking about weather prediction is on a global scale and looking out of the 

window is micrometeorology; that is done in a different context. I do not think people were 

that interested micrometeorology in 1946. They were ((.)) at the global weather prediction. 

Of course, our favorite is random number studies and you may be interested to know that this 

used to consume quite a bit of power. You can see it is 160 kilowatt. Where is it? Well, it is 

here, 174 kilowatt. That used to attract lot of insects from outside. This was housed in a big 

room. The footprint of the machine itself is 80 by 3 and those were made from those vacuum 

tubes, used to generate lot of heat and those bugs, insects used to be attracted. They used to 

come and sit on them, they would die and sooner or later, the vacuum tube will give up and 



then, they will say “We have a bug problem.” Even today, when we write a program and we 

get into some kind of trouble, we say we have a bug; that is the origin, it all originated there. 

((.)) At that time, it was talked about in the context of hardware, failure of hardware. The 

University of Pennsylvania graduate students have actually developed the same functionality 

and a chip now which has a size of 40 millimeter square.  

You can see the comparison here side by side. Power consumption has come down to 0.5 

watt now because it does not have those vacuum tubes, it does not have those resistors and 

capacitors and of course, the size is really miniaturized. So, that is how it all began. 
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Then in 1951, Prof. Minsky built this computer to mimic networks of neurons in the brain 

called SNARC. This is a momentous day. Backus and his team at IBM started developing the 

scientific programming language called Fortran. I will talk about Fortran and other languages 

in a little while, but please do understand what Fortran started with, it continuous to deliver 

despite all the fashion statements that we hear from different languages from time to time. It 

is the surviving scientific language tool.  

This is what I told you. In 1957, the first chess-playing computer MANIAC was designed at 

(( )) and of course in 1977, we know it finally came to the goal of defeating a grandmaster. 

So, this was the original startup point of chess-playing computers and this is where it shone 

up its potential. We will talk about this aspect in a short while.  



(Refer Slide Time: 29:30) 

 

Now, when we come to the actual usage of this high-performance computing that came 

about, one of the nice milestones was achieved in 1969 when a general circulation model for 

coupled ocean and atmosphere code was run by Manabe and Bryan and this significantly 

improved weather prediction. Needless to say that it was helped because at the same time, I 

suppose, our satellite technology was also improving and as I told you about integrative 

approach, weather prediction is one such integrative approach because anything and 

everything that we can get from the atmosphere, we try to put in those information in our 

weather prediction code and all those came around the same time.  

Our computing ability became better. Then, we have all these other inputs coming from 

different technical sources; that really significantly improved weather prediction. In a 

temperate climate like in Europe or in North America, about latitude of 30 degree north, the 

weather prediction has really improved significantly. Now, I suppose people can get very 

good quality weather prediction for 48 hours upfront. This is with the qualifier that even 

today also, the same set of people will not be able to track a cyclone very clearly. Those are 

problems of fluid mechanics; if we have time, we will talk about them but general day-to-day 

weather prediction with some weather events occurring, those could be done, are done quite 

routinely now. 

Well, 1972 was the time the handheld calculator made its appearance and it took only four 

years before Seymour Cray launched the first supercomputer. Now, I will give you a formal 



definition of supercomputer. You would be very interested to know what that supercomputer 

delivered in 1976, I think all these laptops will beat that supercomputer hollow in terms of 

computing power. So, supercomputer is a euphemism; it is a fashion statement dependent on 

the time frame we are looking at. 

Now, we have more computing power at our desk than this supercomputer delivered. In fact, 

Cray-2 was delivered in 1986 and it gave us a computing power which is referred to by a first 

gigaflop machine. All your laptops and desktop PCs today give more than a gigaflop. So, you 

can see that that much of computing power you have. Well, it depends on us, how we use 

them. Are we using them as a supercomputer or a chat network? That depends on us.  

Now, one of the major aspects of supercomputing in science depends on how we solve the 

problem. One of the algorithmic developments came about with the advent of parallel 

processing. So, you are basically solving a chunk of integral problem in parallel by slicing it 

into bits and your computer is going to work on them bit by bit and integrate the result; then, 

you go to the next step and so on and so forth. So, that is the parallel machine; the concept of 

parallel processing came about with the advent of the Connection machine machine. The CM 

machines came and that also revolutionized scientific computing.  
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Of course, this is what we all depend on now. The World Wide Web was developed by the 

physicist Berners-Lee. He thought he could synchronize the computing power in different 

parts of the world and solve big problems of physics. We know how the World Wide Web is 



used today. People are still not solving those physics problems for which it was actually 

thought it would be used. The next milestone came about in 1997, where again we see a 

thousand-fold increase in computer power from gigaflop to a teraflop machine achieved by 

ASCI Red machine.  

To cut the story short, when we look at 2008, this is the fastest supercomputer available, once 

again at Los Alamos. When it was introduced in 2008, it had 1.026 petaflops. How do we 

benchmark these speeds? They are basically done using a set of linear algebraic equations 

available in this package called linpack and in this activity, they were actually solving two 

million coupled equations simultaneously. That is a moderate number, not a big deal. I mean, 

we ought to be ready to do that any point in time in solving big problems. 

What was more interesting about this Roadrunner was that it is one of the most energy 

efficient computers. For each watt spent, it delivers 488 megaflop power. You probably know 

the existence of this list called TOP500. You can go to the Web and you can find out. Every 

year, I think in the month of June or November, they update the list. So, the list that I am 

showing you is up to date. I think it has crossed 1.05 now. So, it is a marginal improvement 

over the last 6 months. It is probably because of the addition of more processes but we are 

still hovering around 1 petaflop rating.  
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This is the number 2. This is really fancy, is it not? This is a Cray computer, Jaguar. This is at 

the Oak Ridge. This also comes a close second.  
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Let me tell you that all the TOP500 machines that we see ((.)) process power and these are 

the top five that you can see: there is the Roadrunner, this is the Jaguar. This is the new kid in 

the block; it just made its announcement last month, a German group but you can see the 

number of processes they are using. Of course, we do not call them any more processors. 

What do we call them as? Cores, because each processor can have CPUs with multiple cores. 

Most of you probably would be using a Core 2 Duo or dual core or quad core machines.  

This one actually ((.)) processors. You would be interested to know that this was actually 

developed for PlayStation by Sony. These are graphics processors. Graphic processors have 

an enhanced ability for number crunching. So, they are very fast. In case any of you fancy to 

put up a fast computer together, the basic unit should actually be drawn from this graphics 

processor. 

You can actually see different machine use different cores. This has come about to about… 

crossed a petaflop barely but using about almost 300,000 processes. These are the top 5 that 

you see in the TOP500 list. Let me also tell you that do not pay too much of attention on this 

kind of listing because there are lots of people, lots of organizations who do not want to 

divulge what they are doing, especially the defense research in USA will never compete for 

this. So, do not put too much of faith in this list. Although in India we are used to newspaper 

headlines that we are number 5 or number 18 now, those are not so good but there are certain 



good aspect even for those activities. I am not belittling them; they are good but let us keep 

that aside.  
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Now, you would have that you want to solve a real-time problem with a faster machine, more 

powerful machines. So, it connotes a powerful and expensive system. All those machines 

actually cost more than hundred million dollars. Of course, they are used for weather 

prediction. We use it quite often, aerospace engineers; even for designing new cars, for 

looking at its crash-worthiness or safety aspects, such activities are taken and of course, any 

problem on physics and maths, which require large-scale computing, would use the best in 

the market. 
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Apart from those benchmark numbers, let us see what really distinguishes these high-

performance computing machines from the other machines used for known high-performance 

computing. It all began with the idea of Seymour Cray where he actually conceived of having 

a vector computer. So, if you have an unknown array, you break it down into few vectors and 

process them as vectors; that is how all this began in that 1976 machine.  

Right now, we can go to not necessarily vector, we have machines which use very, very large 

number of interconnected processors and these processors need not necessarily be 

homogenous; they need not belong to the same class or category they could be 

heterogeneous. So, you could have a room filled with different types of PCs and you can put 

them together in a cluster and you can derive enhanced power which all originated in vector 

processing and the current activity is what we call as parallel computing.  
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With this definition of high-performance computing, we can also see that there are other 

ways which we talk about. You may have heard of quantum computers, but let me warn you 

quantum computers and the traditional computers that we talk about are apples and oranges. 

They do not perform the same task, they are not even fruits; even apples and oranges are 

being charitable to quantum computing. They actually solve an entirely different class of 

problems.  

What you do with classical computers I do not think any quantum computer will be able to do 

right now. Then, you may have heard of grid computing. That is probably what the World 

Wide Web was conceived of. So, now that is being exploited. Grid computers, then we know 

supercomputers, we have the mainframes, we have the minis, micros, then of course we have 

the front end, the terminals and we may have even embedded computers; that should come in 

most probably in the near future in all white goods – domestic purpose usage; your fridge, 

your TV, everything should probably come fitted with computers. So, we have all 

possibilities looking at us.  
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We have talked about it. The main thing to realize that computing performances grown by 

about two million times in the last 30 years and these last 30 years means I am talking about 

1975 to 2005. Today, we have petascale computing and we hope to arrive at a time when we 

would be doing great things, greater things.  
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This is a sort of a comparison between USA and Japan. The red dots are the Japanese ones 

and the yellows are the USA machines and we are right now here (Refer Slide Time: 43:26). 

This is one petaflop; so, we are already here. Open circles are the ones that are projected, but 



we have already reached here; in 2008, we have crossed 1 petaflop rating. Japan plans to get 

to 10 petaflop machines. So, this is a 10 petaflop machine. They are hoping to get it by 2011 

or 2012. As you can see, we started from here with the first supercomputer Cray-1 and then, 

we reached in 1980 the first gigaflop machine. Then, this was the teraflop and then, this the 

petaflop. So, the march is on.  
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Perils of projection. You ask anyone and everyone, they will tell you “Give me this and I will 

deliver this” and this is what was predicted by a scientist from NASA ((.)), Dean Chapman. 

He wrote this paper Computational Aerodynamics Development and Outlook in 1979 and I 

just want to draw your attention that he said that when we get this kind of number of points, 

((.)). So, he showed that when we reach around one million points, we should be solving the 

flow ((.)) complete aircraft.  

Now, of course, you can do it in your PC, right? You have more memory than that. How 

many people are computing flow ((.)) full aircraft. Not many I know of. Of course, aircraft 

companies are doing it but that does not come with this kind of projection; they work on 

different issues. Well, probably, we human beings are optimists so we always look at the 

positive approach of what we can get.  
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This you probably all know. Anything that you cannot prove you can proclaim it as a law; so, 

Moore did that and he said that every eighteen months, the number of processes in a chip 

doubles. This excludes all those supercomputers. Supercomputers actually outstrip Moore's 

law. So, there is already always an exception to Moore's law. I do not know why computer 

scientists call this as Moore's law.  

This computer power and the memory actually are growing exponentially with time and this 

memory that we are talking about is the RAM, not the hard disk part; those grow actually 

even much faster at double exponential rate. We have already said that computing power is 

denoted by floating point operations per second. That means that if you have a higher flops 

machine, you have higher computing power and then, we can keep on trying to speed up the 

performance gain of the computers but we must be alert to the constraint that when more and 

more number of processors are packed in a chip, we are actually creating more heat and that 

is a significant constraint.  
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For example, by 2010, people project that there will be one billion transistors in a chip and 

that would create about 2 kilowatts of thermal energy. If you look at the energy density per 

unit area, this heat creation is more than what actually nuclear reaction does on a per unit area 

basis. So, it is a fascinating figure to keep at the back of your mind that this is a serious 

problem.  

For example, look at this ASCI-Q computer which was housed in Los Alamos in 2002. It 

delivered about 30 teraflop, it had about 12,000 processes in 2048 nodes, 12 terabytes of 

RAM, and 600 terabytes of disk storage. This was the building that was housing this, 300,000 

square feet. It had to have those cooling towers, rows of them. Those cooling towers would 

radiate heat into the atmosphere. If the computer needed 3 megawatts of power, the cooling 

needed 2 megawatts of power. So such a serious problem that you encounter. What happened 

at the time of introduction was that every time a computer is started on, it would run for few 

hours and then it had to be rebooted.  
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We have this nice thing called mean time between failures, MTBF. At that time, this MTBF 

was only few hours for ASCI-Q. Of course, in comparison, today, for the Blue Gene of IBM 

that was installed in Lawrence Livermore, the power significantly came down to 2.33 

megawatts and it had a much higher power rating you can see; as compared to 30 teraflop, 

this is 480 teraflop. This is the fastest machine that we have already talked about.  
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On the left is your ASCI-Q and this is your Roadrunner of today. You can get a pretty good 

idea of what supercomputers look like. Where do we go from here? 
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The milestone set for supercomputers is to emulate the performance of a human brain. Why? 

It is because it is still a little into the future and we can continue to give excuses for some 

more time for not being there. What the human brain does is it performs about 10 to the 

power 16 synaptic events. That is equivalent to something like 10 petaflop. The human brain 

has only 10 terabytes of memory. So, it is worth what? Rs. 60,000 now? Can you get a brain 

for Rs. 60,000? I do not know.  

The interesting part is it only consumes 10 watts of power, only 10 watts of power. Now, you 

know your computer requires at least 100 watts to deliver 1 gigaflop. So, if you can scale up 

to this, you would require a billion watts of power, but the interesting part is not about the 

speed of computing, I think it is the quality of computing that is distinctly different in the 

human brain as compared to a computer.  

For example, we are predicting that by 2019, we should get an exaflop machine. That is your 

10 to the power 3 petaflop machines; so, next milestone. Of course, I do not know how this 

etymology comes about but every time you increase it thousand-fold, you have a fancy 

acronym here: zetaflop, yoltaflop, xeraflop; it will keep coming. I think some of you can keep 

on thinking about putting some more numbers to the right.  
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There it is. If you look at a Roadrunner versus the human brain. I told you that qualitatively, 

the human brain functions in a different way. Synaptic operations in the brain are actually 

done through ion channels. These are basically chemical signals, not electrical signals per se. 

You have got to realize that the electron travels much, much faster than liquid in the ion 

channel under the same electric field.  

The bottom line is that computers are faster but they are tremendously wasteful. They are 

much more faster and that is why they could defeat a grandmaster because BlueGene/L came 

to that stage where it could do much faster calculation, faster than a grandmaster could think 

of; we know that it defeated a grandmaster.  
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Present-day processors are manufactured on a 45 nanometer scale. I think it has come down 

to something like 32 or something in a recent document I have seen, but we are getting there 

virtually, hitting the wall. This hitting the wall will come about because of the heating issues 

plus this is a dangerous thing lurking in the corner: indeterminacy of ON/OFF positions of 

switches and this is what is called as quantum mechanics effect. So, we would not even know 

whether a switch is in an ON state or OFF state. It has been claimed that quantum computing 

will take care of this. I have put a question mark because I do not believe it is as trivial as 

that. This paper in Nature once again states that quantum computers should be available by 

2020 because there are many, many technical challenges and those have to be circumvented. 

One of the reasons that heat is generated is we have too many interconnect wires and there is 

Ohmic heating which creates this heat.  
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Suppose we replace them by optoelectronic connectors, then we can probably improvise and 

deliver more computing power. So, many future supercomputers would use laser lights for 

communicating data streams. People have already started working on materials like indium 

phosphide and erbium; they are etched on top of the silicon chip. Some references are given 

here, you can take a look at this if you are interested. I am not an expert, I do not know what 

is in store really.  
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Software and algorithm played its role, I told you. Starting with vector processing, we came 

to parallel processing. We also have to think of sometimes a new innovative architecture. 

This was adopted by Dr. Narendra Karmarkar at CRL Pune. That delivered us that EKA 

computer, which is the fastest Indian computer in the TOP500 list; today also, it is in the 

eighteenth spot. He actually conceived of an innovative cluster architecture; he sourced all 

the hardware from the market and came out with this kind of computing power.  
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Parallel and cluster computing essentially involves breaking of work or a task into smaller 

pieces. You do some kind of what is called as domain decomposition and use a technique 

developed by a mathematician by name Schwartz; so, we call it Schwartzian domain 

decomposition; that is the backbone of all parallel computing. What we do is we take the 

domain and break it into sub-domains and the problem is solved independently in each 

processes. After that activity, individual processors communicate. 
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This is basically the thing. We have the main problem and we split it into four. 

Independently, we work here at this level. After the step is done, we again go back and 

integrate the data for the whole domain together and from there again, we restart. So, 

basically, you can realize that there is lot of I/O involved, there is lot of input/output 

transactions involved.  
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What happens is the architecture is also built around in two ways: if you have a shared 

memory or you have a distributed memory. I am sure all of you know of it and so, it is not 



really worth explaining to you what they are but they do use some kind of special-purpose 

software libraries like PVM (parallel virtual machine) and MPIs; without them, it is very, 

very difficult to work. In fact, even I myself do not do parallel computing; I depend on my 

brain.  
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Performance issues, we can see that communication is a major issue for distributed 

computing. If we have a poor design, we will have congestion of data and the performance 

deteriorates. What we usually do is we have something called a master and under the master, 

we have some slaves; so, this is what happens. Suppose the slave is not doing its part, then of 

course, the information is not sent back to the master after one step and if all the information 

is not there, you cannot go to the next step. That is what is the problem of latency.  

That latency is a major issue that we need to worry about. We need to understand what is 

called as load balancing. We should distribute the load equally, equitably among all the sub-

processes so that they all conclude at the same time and send back the information to the 

master so that we are ready to go for the next step. You also understand that between shared 

memory and distributed memory, shared memory will be preferred because then from the 

slave memory, all the sub-processes are tapping the information and putting them back. So, 

you do not have to do that much of I/O transactions as you do with a distributed memory. 
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So, this is about massively parallel computers. What happens is although we said that in 

parallel processing, we will break up the problem into smaller sub-pieces, those pieces are not 

completely distinct from each other; there will be some kind of overlap because we have to 

communicate among the processes. This is what we call as overlapping sub-domains and if 

we have a massive parallel computing going on, this overlapping sub-domains actually 

creates some kind of problems in communication latencies because what one processor is 

doing, the conclusion of its task it is supposed to transmit that information near that 

overlapped region to its neighbors. If that is not done efficiently, that would also create a 

latency problem.  
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The current trend is of course to go for cluster workstations and then, we have come to this 

level where we have multi-core machines, which we are seeing more and more and people 

are again re-looking at shared memory systems.  
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As far as algorithm issues are concerned, this somewhat depends on machine architecture. 

Parallel algorithm development and efficient parallelizing are the subject of many such 

researches. I have given here one reference and you can look at some problems which are 



called nick keeping ((.)) class of problems which are efficiently parallelized but this 

information may be dated, I am not very sure about that.  
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There are other ways where we could contribute. We could develop better methods of 

calculation itself and we have done a bit by ourselves. These are by some new implicit 

methods where we get an order of magnitude improvement. In fact, that gives us a computing 

power improvement of the order of maybe hundred times to of thousand times. So, we end up 

doing lots of problems on our desktop, which probably people elsewhere use supercomputers 

to solve. 
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As far as programming guidelines are concerned, I told you Fortran came in 1954. Then, we 

had all kinds of languages coming up: Algol, PL/I, C, C++, Java, but Fortran is the longest 

surviving and very adaptable language. This adaptability actually is the key to its longevity 

because it kind of incorporates all the better features of all other languages. It is seen that 

Fortran actually outperforms C version of codes because what happens in Fortran compiler is 

you actually can identify the kernel which is doing the main computing and that could be 

hand optimized which is not possible. I will show you an example here.  
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This is from a paper. Simple multiplication is done, matrix multiplication. On this side, you 

have the number of elements of this matrix size and on this side is the speed. So, on the left 

hand side, you are seeing Fortran and this is C. You can see the scale is different. This is 600 

and this is 300. So, there is a factor difference and what you also notice is that depending on 

the architecture, every machine has a fair bit of plateau where it performs well but then, it has 

a performance degradation if the size of the problem becomes bigger than this. In this case, 

you can see a drastic fall. These are four different machines you can see. In all of them, you 

can notice that Fortran always outperforms.  

Unfortunately, I think it is not being taught here but all the students pick it up; it is very easy. 

So, when it comes to scientific computing, I am sure any of you taking up any new problem 

would be well advised to look at Fortran more seriously because if you continue to work in 

scientific computing, that is a language of preference. I think this is a kind of a general 

introduction I wanted to give you in this class. From the next class, we will get into the 

subject proper and we will talk about various aspects of scientific computing.  

As I told you, I have a core of students, some of them are here; they are basically working on 

various aspects of our computing activities. So anytime I give you some assignments, etc., 

you are most welcome to visit our lab that is in the Aerospace building and you can discuss 

about your problem. There are your other classmates. I can see quite a few of them. They 

have already used our lab. So, you can also come and join them. This is where I stop. 


