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Lecture - 09 

Impact of Drag 

 

Hello and welcome. In the last lecture if you recall, we had looked at the implication of gravity 

along with the propellant burn rate on the overall terminal performance and we also looked at 

the loss of energy due to gravity and its connection with the burn rate. Now we are ready to 

bring in the third force that we have considered in our earlier discussion that is the aerodynamic 

drag and consider its implications. So let us begin. 

(Refer Slide Time: 01:14) 

 

So let us begin our discussion on the impact of drag. 

(Refer Slide Time: 01:21) 



 

If we look at the drag as an effect which is of a reasonably smaller amount, then you find that 

for most missions, it will essentially be an order of magnitude lower than gravity and it is 

treated as a tertiary effect. While in the case of gravity, we made a simplified assumption about 

the value of the gravity. 

 

Because the drag is an even smaller order effect, we can use an even simpler model to capture 

the effect of drag which is primarily based on energy concept which we will look at next. 

(Refer Slide Time: 02:43) 

 

So, the simplified drag model essentially is aimed at capturing the overall loss of energy that 

will occur during the complete trajectory through the definition of the concept of a constant 

average deceleration that we can introduce in the equations of motion so that they remain linear. 



And we will try to match the overall energy that gets lost because of such a constant average 

deceleration against the actual energy loss which is likely to happen. 

 

And it is found that such an approach gives a reasonable performance estimate. So, we again 

assume that our trajectory is along a straight line that is a radial line. Under that condition, we 

can now rewrite our equations of motion which we borrow from our earlier discussion on 

equations of motion for gravity and then we just subtract one more term that is 𝐷/𝑚 on the 

right-hand side where 𝐷 is the drag, 𝑚 is the mass. 

 

Now this 
𝐷

𝑚
 is what I call an acceleration or with a negative sign we can even treat it as a 

deceleration to drag that the vehicle will experience while moving through atmosphere. And it 

is just a pure subtraction from the value of the thrust. Now in this model, the 𝑎𝐷 term that I 

have introduced is going to be treated as a constant drag acceleration term similar to a constant 

gravitational term that we have already introduced in the last lecture. 

 

Of course, we know that 
𝐷

𝑚
 is not a constant because the drag varies in a particular manner as a 

function of altitude and velocity. While the mass varies as per the burn rate introduced. So 

obviously, 
𝐷

𝑚
, which is the actual acceleration at each time instant will vary along the trajectory. 

(Refer Slide Time: 06:10) 

 

So how does it vary? And here we have something to help us which we have already seen 

earlier. So let us consider the generic drag versus altitude plot, which we have seen earlier as 

dynamic pressure versus altitude plot. But now, only it is scaled version. Here you will notice 



that the 𝑥 axis which earlier was only the dynamic pressure has now been multiplied with the 

reference area and the drag coefficient so that this represents the drag variation as well. 

 

You will realize that the variation will remain the same except that it will get scaled to the force 

units rather than the pressure units because the surface area at least through the atmospheric 

phase of the flight will remain constant. And the drag coefficient as we have discussed earlier 

is 1 for a bluff body assumption that we have already made. So, you will realize that the same 

curve can adequately represent the variation of drag with respect to altitude. 

 

Of course, in the equation that we have written down in the previous slide, the drag is a function 

of time. But what you would realize is that as altitude itself is a function of time, drag versus 

altitude is an adequate representation in the present case. Now let us bring in the idea of the 

energy loss. So as drag is a force and altitude is a distance, from our basic understanding of 

mechanics, we realize that if I calculate the area under the curve that will represent the total 

energy contained in the drag term. 

 

Because the area under the curve is nothing but the integral of 𝐷 that is drag into 𝑑ℎ taken over 

the applicable altitude. In this case, as we have noted earlier also, beyond 40 km altitude the 

actual drag is negligible so that the area under the curve can adequately represent the total 

energy that would be lost because of drag. Now we introduce an approximation through the 

red dotted triangle that is shown in the picture. 

 

Now the reason for introducing this is not very far to seek because the shape of the curve is 

very nearly a triangle except that it is a curved triangle. By introducing the straight lines, I 

introduce an approximation. But I have another point. If you see the triangle closely you will 

find that the overestimate of energy in the upper part by the triangle is to some extent 

compensated by the underestimate of the energy or the area by the lower part of the triangle. 

 

Which obviously means that in some manner, the triangle can reasonably capture the overall 

energy that might be lost. The reason for generating this triangle is that once I create this 

triangle, I can match this triangle with the green rectangle as the next level of energy matching. 

So, I can say that the area under the triangle which is same as the area under the actual curve 

is also the area under the rectangle. 

 



And once I assume that the area under the rectangle is same as the area under the curve, then 

the width of the rectangle is nothing but my average drag acceleration that I have used in the 

expression. I hope this translation is clear to you. So, once we do this, then it is extremely 

simple to go from the actual curve to the value of average drag just by looking at certain features 

of the curve. 

 

So, in this case, because we are drawing the triangle at the tip of the actual curve, which is the 

maximum value of the drag, by dividing this value with the instantaneous mass at that altitude 

it will become an instantaneous drag acceleration value which is the peak value that the system 

will experience. 

 

So, once I introduce this idea of the peak value of the acceleration, which is nothing but the 

point at which the triangle has the apex, then we know that the area under the triangle and the 

area under the rectangle will be exactly matched if the width of the rectangle is half of the peak 

value. This is directly from our triangle relations of area calculation which is nothing but half 

base into height. 

 

So, half the height is nothing but the total area. As long as I match the height the average value 

of acceleration is just the half of the peak value by matching the area. And you will realize that 

that can represent a reasonably good approximation to a smaller order effect of drag so that in 

the initial estimates, we can always get the impact of the drag for a given trajectory without too 

much of computational effort, which would otherwise be required for solving the complete 

nonlinear differential equation. 
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With this let us rework the previous example that we have seen in our gravity last case to see 

what is now the order of magnitude or the impact of the drag on the terminal performance using 

the simplified expression that we have generated. So let us take the same problem, the burn 

rate of 600 kg/s and now introduce the three dynamic parameters necessary that is the 𝐶𝐷0 = 1, 

the surface area assumed to be 𝜋 m2. 

 

And one last parameter which is introduced just to kind of use the computational effort at this 

point is to make a stipulation that the drag will be maximum at roughly around 50 seconds, 

which is the half of the total burn time of 100 seconds in this case. Let us assume that it would 

be somewhere around this. The reason why this number is chosen will become clearer as we 

look at the solution. 

 

But I just want you to keep in mind the fact that the peak of the drag is roughly around 10 km 

to 12 km altitude range, which means that if we take the time at around the value which results 

in the altitude value of around 10 to 12 km, then the drag calculated at that altitude will 

essentially represent the maximum value of drag for that particular trajectory. 

 

It is an approximation, but it helps us to simplify our analysis. So let us try and determine the 

impact of drag. So let us first recall the non-drag values that we have already seen earlier for 

this case. That is the final burnout velocity is 2.3 km/s and the altitude is 78 km when there is 

no drag. And we would like to compare these values with the value of the same parameters 

when related to the drag term. 

 



So let us now look at the analysis step by step. So let us first calculate the velocity that this 

particular vehicle will reach in 50 seconds. So, it is the application of the same expression that 

is the expression with gravity but without drag and we find that this results in the velocity of 

616 m/s. The corresponding altitude that is reached is around 13 km which is not bad. 

 

You will find that by and large the drag will peak around this altitude for most of the 

trajectories. And then we go to the atmospheric tables that are readily available and from that 

atmospheric table, we read out the value of atmospheric density at this altitude. So, which is 

0.267 kg/m3. Now the next step is to calculate the drag which is nothing but 
1

2
𝜌𝑉2𝐶𝐷𝑆𝑟 at 13 

km altitude. 

 

So, if you do this calculation, you will find that the drag at this altitude is 159 kN. Further 

because we have proceeded up to 50% of the total burn time, we have consumed half the 

propellant, which means about 30 tons of propellant has been consumed. So, the effective mass 

at this point is only 50 tons. Based on these two quantities, we now simply calculate the peak 

value of the drag curve as 3.18 m/s2 and compare this number with the gravitational 

acceleration, which is about 9.81. 

 

It is one-third of that. But more importantly, because we are going to use an average value, it 

is not a constant it is only the peak value, the average value is just half of this. This comes out 

to be 1.59 m/s2. Now you can see that this number is practically one-sixth, almost an order of 

magnitude lower than the value of the gravitational acceleration. So, our original hypothesis 

that the drag is a tertiary effect is also justified. 

 

And with that small term, we can also say that our approximation that we have introduced using 

the energy balance methodology is also justifiable. And with this drag, I suggest that you do 

this exercise yourself as per the equation that we have seen earlier. You will find that the 

velocity which was 2.30 without the drag becomes 2.14. So, this is the amount of loss. About 

160 m/s is the loss in velocity due to drag. 

 

And similarly, the altitude which was 78 km becomes 70 km, about 8 km loss in the altitude. 

Together you can add the potential and the kinetic energy loss together and that will effectively 

tell you how much of energy loss has happened over and above the gravity loss. 



 

You will find that this energy loss is significantly lower than the energy lost due to gravity for 

the same case, because the ideal velocity is 3.264 km/s that represents a particular energy 

compared to that the gravity case gives an energy lowered by about 36%. We will find that this 

will add another 8 to 10% in the loss. So that the total loss is likely to be around 45% of the 

complete energy. 

(Refer Slide Time: 21:50) 

 

Let me now introduce an idea that we have not seen earlier. If you recall, we had given an 

expression for gravity energy loss as a function of 𝛽. But we had not actually characterized the 

impact of 𝛽 directly. But we had made a mentioned that chances are that the drag loss is likely 

to be higher if you burn faster. Let us try and examine that idea now through the same example. 

 

And this time, we take a significantly higher burn rate of 3000 kg/s, which is five times more 

than what was there in the previous case. You will immediately realize that if you are going to 

burn at 3000 kg/s, all the propellant will get burnt in 20 seconds itself and that the peak would 

be lower than what happens at 20 seconds. 

 

So, in this case, we make a stipulation that the drag peak will occur somewhere around 15 

seconds, which is in the lower atmosphere. And we are going to assume that this should again 

be roughly around 10 to 12 km altitude. But now because we have changed the burn rate, our 

non-drag values change. We have already realized that the implication of a higher burn rate is 

to reduce the gravity loss. 

 



So, we get a higher burnout velocity at 3.07 km/s and a significantly lower altitude at 23.4 km. 

But the total energy is significantly higher, because the loss is much smaller. Now assuming 

that t equal to 15 seconds, we calculate the altitude which is achieved at this time and that 

altitude turns out to be 11.5 km. So, our assumption is justifiable. But we are still in the same 

ballpark of 10 to 12 km. 

 

The velocity now at this altitude, please note, instead of 616 m/s that is what you saw in the 

previous case is now three times. It is almost 1800 m/s, very high velocity at nearly the same 

altitude. So obviously you see that your drag term which was 159 kN is practically 10 times at 

1713 kN because the drag is significantly higher. 

 

And more importantly because you have burned faster. You have consumed lot more propellant 

in 15 seconds. In 15 seconds, you have actually consumed 45 tons. Because you have consumed 

45 tons of propellant, the residual mass is only 35 tons. So mass is also lower. So, your peak 

of acceleration is significantly higher, which was earlier 3.48 is now already 49 m/s2. 

 

That is practically five times your gravity. Which means your drag loss if you do this is going 

to be five times the loss that you are going to get because of gravity. Of course, we can also 

calculate the average drag acceleration that is half of 49. And based on that, we calculate the 

velocity and altitude. And now you see that the impact of this drag is significantly higher. 

 

Now 3.07 km/s has become 2.58 which is almost 0.5 or 500 m/s lower and effectively we can 

say is about 20% loss, 15 to 20% loss in velocity. Similarly, you have another 5 km loss in 

altitude, which is also close to about we can say 20%. Together you will find that this is going 

to represent a very large energy loss. That brings us to the same point that we had seen earlier. 

 

But had not this particular result in front of us to make any comments. So now let us look at it 

that if we burn faster, we reduce the gravity loss, but then we increase the drag loss. Similarly, 

if we burn slower, we increase the gravity loss, but then we reduce the drag loss. So is there 

going to be a golden mean of burn rate where we might be able to keep both the losses to their 

minimum value and thus make the mission an optimal one. 

(Refer Slide Time: 27:35) 



 

So, this is the next hypothesis that we need to examine. And we need to do this by modelling 

both the losses together so that we now get what is called a combined loss and see if we can 

get a minima for the combined loss and map it to a burn rate which is going to be applicable 

for that trajectory. 

 

To say that if you burn the propellant at this rate, then this is the most efficient mission with 

the given propellant and the liftoff mass and the propellant that you can carry out considering 

the loss due to gravity and the loss due to aerodynamic drag. 

(Refer Slide Time: 28:33) 

 

So let us take the same example. But this time we do not implement any burn rate. You are 

now going to look at the combined loss. So let us see if we can get combined energy loss as a 

function of burn rate and locate the minima and determine the corresponding optimal burn rate. 



 

Just to simplify our analysis and the various algebraic steps, let us again assume that the drag 

profile peak is going to be around 12 km altitude, so that we can fix the density value. And let 

us also use the 𝛽 in the range of 400 to 1200. Let us see if that gives us something. 

(Refer Slide Time: 29:30) 

 

I want to show you something on the right-hand side, which is the approximate solution and 

then I will tell you how the solution has been obtained. So, this solution is the solution for the 

loss of combined energy as a function of burn rate starting from 400 kg/s to about 1200 kg/s. 

And you see that this is a classic concave curve, inverted parabola with its minima line very 

close to the 600 kg/s that we have used in our examples earlier. 

 

Which means, the number that we had used was very close to the actual minima that you are 

going to get. The above curve has been obtained through MATLAB, by writing a small code. 

I suggest that you can also try that exercise. I will tell you the steps involved in the code that is 

to be developed. That is, you take the solution, because of gravity. 

 

Based on that solution, generate the velocity at 12 km altitude and with that velocity and the 

density at 12 km altitude, get the value of drag. And once you get the value of drag, you can 

find out the time taken to reach that altitude. Multiply that time taken with 𝛽 to find out what 

is the residual mass as that altitude as a function of 𝛽. It is not going to be a constant, it will 

now be a function of 𝛽. 

 



Based on that, obtain the drag peak, which is going to be a function of 𝛽. And then go back to 

the expression and recalculate the velocity and the altitude under the action of this drag 

acceleration term as a function of 𝛽. Add this loss to the loss because of gravity and that 

becomes the combined loss. This is how that solution has been obtained. Of course, we need 

to realize that this is a highly simplified analysis. 

 

So obviously it is an approximate representation. And you will probably need to do a more 

rigorous analysis to arrive at the actual optimal burn rate. But the idea that I am trying to 

propose is that by making reasonable assumptions, we can simplify the analytical procedure 

and still get a reasonable understanding of the physics involved in the process. So, you will 

realize that there is a possibility of arriving at an optimal solution for the burn rate by try to 

adjust such that the combined energy loss is a minimum. 

(Refer Slide Time: 33:10) 

 

Of course, such an analysis would always be carried out even for the simplified case of a 

constant burn rate in a more rigorous manner towards the end of the design through complete 

nonlinear simulation of equations and numerical solutions. We will find that at the initial stages 

of design when you were trying to size the rocket and you want to understand how much loss 

would be there because of gravity and drag put together. 

 

So that you can appropriately put the propellant and the 𝐼𝑠𝑝 correspondingly as part of your 

design solution, you need a kind of a gross estimate of the burn rate. A very crude thumb rule, 

which can be commonly used in such situations is that an optimal 𝛽 could generally lie close 

to a trajectory for which the gravity and the drag loss are nearly equal in their magnitude. 



 

This is based on the fact that variation of these two effects are broadly similar in nature but 

completely inverse of each other. And also, that when gravity is a secondary effect, the drag is 

tertiary. And when the drag is secondary the gravity is tertiary. So that they kind of complement 

each other and that when there are nearly of the same order of magnitude, the chances are that 

that would be the trajectory where you would have the minimum loss. 

 

Just to understand this, let us go back to the previous picture. If you look at this picture, you 

will find that the effective combined loss is of the order of around 47% which is slightly more 

for more value of 𝛽 beyond 600 kg/s. We already know that for this burn rate, the loss due to 

gravity is about 36%. 

 

So, which means, there is another 10% which has got added because of drag and that when you 

start increasing the burn rate further, while the energy loss due to gravity will reduce it will not 

reduce at the same rate at which the loss due to drag will increase because of the square of 

velocity. So, you will realize that the loss because of drag will quickly climb up so that within 

the same ballpark it would also reach a reasonably high value and that it will overtake the loss 

because of gravity. 

 

So, you can clearly see the increasing trend as you note the curve on the right-hand side. 
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Thus, to summarize, the drag is a smaller order effect, which can be captured from energy 

consideration. Further, an optimal burn rate exists that results in the most efficient mission for 



a given vehicle from the point of view of minimizing the combined loss, Hi, so with this we 

have established a reasonable analytical basis for understanding the implication of various 

forces which are present in the trajectory solution and also a broad idea of how to estimate such 

a loss and find its impact on the terminal parameters. 

 

With this we conclude our discussion on the motion along a straight line. And we will move 

over to a more realistic case of motion along a curvilinear path that we will look at in the next 

lecture. So, bye. See you in the next lecture and thank you. 

 

 


