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Lecture - 36 

Optimal Multi-stage Solutions 

 

Hello and welcome. In in this last tutorial that is tutorial number 4, we will look at the 

optimal staging configuration solution using the Lagrange multiplier method and we 

will understand the solution steps involved in the process. So let us begin. 

(Refer Slide Time: 00:53) 

 

Let us begin our discussion with the simplified problem of equal stages. 

(Refer Slide Time: 01:02) 



 

So, in this case let us consider a 2-stage sounding rocket, which has the structural ratio 

for both the stages as 0.2. Let us try and determine the optimal stage payload ratios that 

is 𝜋’𝑠 and the lift-off mass 𝑚0 for an 𝑚∗ or the payload of 20 kg if the ideal burnout 

velocity required in this case is 6000 m/s and it is burning a propellant of 𝐼𝑠𝑝 equal to 

200 seconds. 

(Refer Slide Time: 01:56) 

 

So let us start the solution. So, we first calculate the parameter 𝛽 which is nothing but 

𝑉∗

𝑁g0𝐼𝑠𝑝
, where 𝑉∗ is the desired velocity and are the number of stages and 𝐼𝑠𝑝 are the 

specific impulses. So, when we substitute these, we get 𝛽 as 1.5290. Here you must 

keep in mind the fact that as we are going to use exponential functions, the number of 



significant digits have to be sufficient in order for us to capture the accuracy from such 

manipulations. 

 

Otherwise, we may get an erroneous solution. So, in this case we have gone up to four 

decimal place and then we calculate the stage payload ratio that is 𝜋1 and 𝜋2 as 
𝑒−𝛽−𝜀

1−𝜀
. 

In the present case the 𝜀 is 0.2. And when we perform this calculation, we find that the 

2-stage payload ratios are 0.0209, fairly small value. 

 

Next, we talk about the mission payload fraction 𝜋∗ which is nothing but a stage 𝜋𝑁 

where 𝑁 is number of stages. So, in this case, as there are two stages, we get 0.02092 

which is 0.00044. And from this, using the payload requirement of 20 kg we find that 

the lift-off mass is 45,610 kg or 45.6 tons. What it means is that our payload efficiency 

in this case is very small. 

 

So just to launch a 20 kg payload, you are going to require a 45 tons rocket. 

(Refer Slide Time: 04:42) 

 

Let us now look at the problem of a 2-stage rocket again with the equal stages but this 

time we use the payload as the constraint saying that that payload is very small. Let us 

try and find out what is the burnout velocity that we can get and also, we have this time 

increase the 𝐼𝑠𝑝 from 200 to 350. So, we have improved the structure from 0.2 to 0.1. 

 



So, it has become more efficient, it can carry more propellant and we have improved 

the 𝐼𝑠𝑝 from 200 to 350. And we also have a requirement of a significantly higher 

payload ratio of 0.1. And you also have a significantly higher requirement of payload 

of 100 kg. Now indirectly what we are saying is that we do not want the rocket lift-off 

mass to be more than 1 ton. 

 

As against the 45 tons that we saw in the previous case, we would like our rocket mass 

to be only 1 ton. But we are willing to sacrifice the burnout velocity. Let us proceed 

with the solution. 

(Refer Slide Time: 06:45) 

 

So, in this case the equal stage payload ratio from our formulae that we have seen in 

the lectures is √𝜋∗ which is √0.1 and we find that the stage payload ratios have to be 

0.316. Now with this stage payload ratio, we find that 𝑉∗ or the ideal burnout velocity 

which is −g0𝐼𝑠𝑝𝑁 ln[𝜀 + (1 − 𝜀)𝜋]. 

 

If you substitute these numbers, we find that we get a velocity of 6,561.7 m/s which is 

a surprise. If we compare these two problems, we find that the previous problem a 

structural efficiency or ratio of 0.2 and an 𝐼𝑠𝑝 of 200 when it was changed to structural 

efficiency of 0.1 and the 𝐼𝑠𝑝 of 350 you are able to launch a 100 kg payload with 1 ton 

rocket and which also has a velocity which is higher than 6000 m/s. 

 



Which obviously means that by small increases in the structural efficiency and small 

increases in propulsion technology, it is possible for us to significantly improve the 

efficiency of mission. 

 

And you will find that the optimization techniques that we talk about essentially aim to 

look at slightly better structure, slightly better propulsion in order for us to have 

significantly better gains in terms of the launch cost which is typically expressed in 

terms of the payload fraction which is so many kgs of payload per kg of lift-off mass. 

 

Let us now move over to a problem where we are going to have unequal stages. Which 

means the stages are not exactly equal. 

(Refer Slide Time: 09:39) 

 

So, in this case, I have taken a 3-stage rocket which has marginally different 𝐼𝑠𝑝’𝑠 and 

also marginally different structural efficiencies or structural ratios. You will find that 

these are typically the numbers that we would be getting in most practical rocket 

configurations. And our objective is to determine the stage-wise payload ratios, which 

will maximize the mission payload ratio such that a 122 kg payload is given a velocity 

of 7800 m/s. 

 

In this context, it might be worth noting that the velocity which is specified in this 

problem corresponds to the spacecraft forming a circular orbit at 200 km altitude. So, 

this is how the spacecraft mission requirements would appear in the form of rocket 

configuration design. Let us proceed with the solution. 



(Refer Slide Time: 11:08) 

 

So first let us look at the basic formulation. So let us recall the solution for the stage 

payload ratio in the present case, which is −
𝜀𝑖

(1−𝜀𝑖)(1+𝜆𝑔0𝐼𝑠𝑝𝑖)
 where 𝜆 is the Lagrange 

multiplier and using the parameters that have been specified in the previous slide, let us 

now write down 𝜋1, 𝜋2 & 𝜋3 in terms of 𝜆. 

 

So, 𝜋1 is −
0.142

0.856(1+2658.5𝜆) 
, which is nothing but this is the 𝑔0𝐼𝑠𝑝. Similarly, for 𝜋2 we 

get −
0.157

0.843(1+2580𝜆)
. And 𝜋3 is −

0.134

0.866(1+2589.8𝜆)
. Now the next step is to bring in the 

velocity constraint relation. 

 

So here I suggest that you go and look up in the lecture the velocity constraint relation 

which is given as 𝑉∗ = −g0 ∑ 𝐼𝑠𝑝𝑖 ln (
𝜀𝑖𝜆𝑔0𝐼𝑠𝑝𝑖

1+𝜆𝑔0𝐼𝑠𝑝𝑖
). This is the expression that you can 

verify from the lecture. What we do is we substitute the applicable parameters into that 

expression and we do one more step. 

 

We divide the left-hand side that is the velocity with −𝑔0 and also divide by the 𝐼𝑠𝑝1 

that is 271. So, if we do that, on the left-hand side we are going to get −2.937. And 

then on the right-hand side what we are going to get will be the ratios of the two is 𝐼𝑠𝑝’𝑠 

with the 𝐼𝑠𝑝1 and that resulting ratio of the two stages is 0.945. This you can 

independently verify. 

 



And then of course, we have 𝜀1𝑔0𝐼𝑠𝑝1, 𝜀2g0𝐼𝑠𝑝2 and 𝜀3𝑔0𝐼𝑠𝑝3 as the numerator. And 

1 + 𝑔0𝐼𝑠𝑝𝜆 for first stage. 1 + 𝑔0𝐼𝑠𝑝2𝜆 and 1 + 𝑔0𝐼𝑠𝑝3𝜆. So, this is now the constraint 

relation that we must first solve to generate the value of the Lagrange multiplier 𝜆. Let 

us now look at how we are going to get this. 

(Refer Slide Time: 14:55) 

 

So, what we do is first of all, we remove the natural logarithm from right hand side by 

taking the exponential on the left-hand side that gives us 0.0532. And then of course, 

we perform all those multiplications so we start getting large numbers. Here again I 

must emphasize the need to retain all the significant digits, because as large numbers 

are involved, any truncation of number here is going to lead to large errors. 

 

So, you see that when we expand the denominator, we are retaining the terms of the 

almost up to eighth or ninth decimal place, so, that the significant digits are all retained 

in the expansion. This results in the following cubic algebraic equation in 𝜆 that is 

1.681754 × 1010𝜆3 + 20425597.3𝜆2 + 7828.3𝜆 + 1 = 0 . 

 

Now any standard numerical solver can be used including MATLAB to extract the 

roots. Please note that as is the cubic equation, there are going to be three roots of which 

only one of them will be the valid or the feasible solution root. So, in this case, we find 

that the one real root 𝜆 is −0.6145 × 10−3. While the other two roots appear in the 

form of a complex conjugate and hence, they are invalid. 

 



What we now do is take this value of 𝜆 and go back to these three expressions of 

𝜋1, 𝜋2 𝑎𝑛𝑑 𝜋3. Now you can clearly see that 𝜆 is a negative quantity. So, when you 

multiply this, you are going to get a minus number which is greater than 1, that can be 

confirmed. So, this denominator will become negative. This negative will cancel the 

numerator and we will get a positive number for 𝜋1, 𝜋2 𝑎𝑛𝑑 𝜋3 as shown. 

 

So, 𝜋1 turns out to be 0.262, 𝜋2 turns out to be 0.318 and 𝜋3 turns out to be 0.262. We 

multiply all these three to get 𝜋∗ which is 0.0218. And from this we can calculate the 

lift-off mass for 122 kg payload as about 5600 kg. Hi, so in this problem, we have seen 

that unequal stages problem where both epsilon and 𝐼𝑠𝑝’𝑠 are different in different 

stages, the numerical effort is primarily in setting up the equation for the Lagrange 

multiplier 𝜆. 

 

And you will find that the order of that equation will be equal to the number of stages 

and that setting up that problem and numerical solution will require some effort which 

is significantly larger than when we have equal stages. Now I will make a suggestion 

to all of you. Take problem number 3 the way we have defined and look at the structural 

ratio same for all the three stages as the geometric mean of the three values given in 

this example. 

 

Which means we are given 𝜀1, 𝜀2, 𝜀3. You multiply all the three, take cube root that is 

the geometric mean and use this in all the three stages. Similarly, take the three 𝐼𝑠𝑝 

values and take their arithmetic mean that is sum all of these and divide by 3. Please 

note these actions carefully. 

 

And now assuming that these are to be used as constants for all the three stages generate 

the solution of the stages in terms of the 𝜋’𝑠 for all the three stages and check that value 

with respect to the geometric mean of the three 𝜋 values that we have obtained in this 

problem. I am sure you will get some surprising results. 

 

I hope you can go on to this journey and discover that how the simplified formulations 

and solution techniques that we have developed for optimal configuration can provide 



realistic and practical rocket configurations with not much computational effort. With 

that we come to the end of this tutorial. So, bye and thank you. 

 

 


