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Rectilinear Trajectories 

 

Hello and welcome. So, this particular session is tutorial number 1 in which we will go 

through some of the problems in the context of a rectilinear trajectory. And we will also 

look at some of the important solution steps and aspects of the various formulations that 

we have done in this context with more details. So let us begin. 

(Refer Slide Time: 01:06) 

 

Let us first explore the idealized burnout solution that we had started off at the 

beginning of our discussion on launch vehicle trajectories. 

(Refer Slide Time: 01:28) 



 

So let us take the problem. So, a rocket has the following configuration. That is its 

propellant loading is 0.9 that is 
𝑚𝑝

𝑚0
 at a specific impulse of 260 seconds. Let us try and 

determine the ideal burnout velocity. So, we recall the expression for the ideal burnout 

velocity as 𝑔0𝐼𝑠𝑝 ln
𝑚0

𝑚𝑏
 , where 𝑚𝑏 is your burnout mass. 

 

We know that this 𝑚𝑏 is nothing but 𝑚0 − 𝑚𝑝, where 𝑚𝑝 is your propellant mass. So, 

what we can now do is we can bring the symbology that we have defined earlier and 

we can show that the expression for 𝑉𝑏 in the context of ideal burnout is 

−𝑔0𝐼𝑠𝑝 ln{1 − 𝜆} which is defined in the problem. So now we have all the parameters 

available for this expression and which now use to evaluate. 

 

So, it is a simple task to substitute these numbers. So, 9.81 × 260 that is our 𝐼𝑠𝑝. And 

the ln(1 − 0.9) which is of 0.1. And this results in a number 5873 m/s. My suggestion 

is you can also independently carry out this task once you have gone through this 

particular session completely so that you also become familiar and comfortable with 

these expressions. 

(Refer Slide Time: 03:56) 



 

Let us now move over to the problems of rectilinear motion under gravity. Which 

means, let us now include the effect of gravity and let us look at the nature of problems 

which will get solved. 

(Refer Slide Time: 04:15) 

 

So let us take the same rocket that we defined earlier. That is, it has a propellant loading 

of 0.9, but 𝐼𝑠𝑝 is only 240 seconds and lift-off thrust is 1.5 times 𝑔0 given in the form 

of thrust per unit mass. So, but we are saying that at the liftoff the thrust is 1.5 times 𝑔0 

and that remains constant and the motion is along a local vertical, which means it is a 

constant thrust case. 

 

Please note a constant thrust case is same as a constant burn rate case. Because our 

thrust is 𝑚̇𝑔0𝐼𝑠𝑝. So, if thrust is constant, we already know 𝑔0 and 𝐼𝑠𝑝 are constant for 



practical purposes. So obviously, that 𝑚̇ has to be a constant. Let us try and determine 

the burnout velocity, the altitude first assuming the gravitational acceleration to be the 

sea level value, and let us compare these with the ideal burnout solution. 

(Refer Slide Time: 05:39) 

 

So, the velocity solution is as your burnout time is nothing but the ratio of 
𝑚𝑝

𝛽
. And 

please note, we have not specified the 𝛽, what we have specified indirectly is the lift-

off thrust which remains constant. So, which means we have specified thrust and from 

thrust we must discover the burn rate 𝑚̇. So, we bring in that idea. So 𝛽 is nothing but 

our 𝑚̇ and that is nothing but thrust divided by 𝑔0𝐼𝑠𝑝. 

 

And thrust is nothing but 1.5 times 𝑚0 × 𝑔0 because 1.5 × 𝑔0 was the acceleration 

given per unit liftoff mass. So, the total thrust would be 1.5𝑚0𝑔0. Of course, we can 

cancel 𝑔0 which I have done here. So, I am only writing 1.5𝑚0. Divide that by 𝐼𝑠𝑝. This 

is my 𝛽. So, what is 𝑡𝑏? It is 
𝑚𝑝

𝛽
. Now what is 𝑚𝑝? 

 

𝑚𝑝 is 𝜆𝑚0. This is our definition. So, I substitute that expression here, 
𝜆×𝑚0

𝛽
 and now I 

get an expression for burnout time in terms of 𝜆𝐼𝑠𝑝 and just the ratio of 1.5. And it 

directly tells me that it will take 156 seconds to complete the burning. Now with this 

𝑡𝑏, I just go back to my 𝑉𝑏 expression under gravity which is nothing but 𝑉𝑖𝑑𝑒𝑎𝑙 − 𝑔0𝑡𝑏. 

 



And if I do this, I find that my velocity is going to be 4342.7 m/s as against 5873 for 

the ideal burnout case. Let us now move over to the altitudes. 

(Refer Slide Time: 08:08) 

 

So, in this case, we recall the altitude expression which is 
𝑚0𝑔0𝐼𝑠𝑝

𝛽
 [(1 − 𝜆) ln(1 − 𝜆 +

𝜆] −
1

2
𝑔0𝑡𝑏

2. Now as 𝛽 is a function of 𝐼𝑠𝑝 and 𝑚0, I substitute that 
1.5𝑚0

𝐼𝑠𝑝
. 𝑚0 will cancel. 

And what will be left will be 
𝑔0𝐼𝑠𝑝

2

1.5
. 𝜆 is already specified as 0.9. So, this will become 

0.1 ln 0.1 + 0.9. 

 

And time is 156 seconds. So, 𝑡𝑏
2. I do this simple calculation and it shows that the 

altitude reached in this case will be 176.7 km. So, we now have the velocity which is 

go back 4,342.7 m/s and we have altitude which is 176.7 km in the present case. 

(Refer Slide Time: 09:34) 



 

Now let us extend this problem, to problem number 3 where let us try and correct the g 

value applicable for that altitude. Please note, the altitude is almost 180 km. So, it is 

very large. So obviously, the sea level gravity value is no longer applicable. And we 

must now correct the gravitational value and recalculate the burnout parameters. 

 

And let us see, what difference does it make if we correct the gravitational acceleration 

value because of the change in the altitude. So, we bring in our gravitational 

acceleration expression in terms of the altitude and radius of earth. And we find that at 

the burnout altitude, the gravitational acceleration will only be 9.29 𝑚/𝑠2. 

 

And now we bring in the simplification and the approximation that we have seen in the 

lecture that because this variation is small over a large altitude, an average value of 

gravitational acceleration can reasonably capture the effect of change in gravity. So, I 

define that 𝑔̃ as an average of the sea level value and the value of gravitational 

acceleration at 180 km altitude. 

 

So that turns out to be 9.55 𝑚/𝑠2. So now I go back and use this value of gravity to 

recalculate the velocity and the altitude. So, I find that the velocity is 4383 m/s, which 

is roughly about 40 m/s higher than what we have predicted from our conservative 

formulation based on sea level gravity. Whereas the altitude is higher by roughly about 

3 km as compared to the 176 km altitude under the constant sea level gravitational 

assumption. 

 



So, you find that even with a drastic change in the altitude of about 180 km, the effect 

of this on the terminal performance is still only marginal. For example, if you look at 

the correction due to velocity, it is typically of the order of 1%. If you look at the altitude 

correction, it is even less than that. 

 

So, what it means is that for most cases of ascent mission which are going to end around 

180 to 200 km, even if you do not correct for altitude, the conservative estimate is not 

very much off. And if we want a more realistic a simplified correction based on the 

average gravitational acceleration is more than adequate. 

(Refer Slide Time: 13:33) 

 

Let us now look at the gravity loss part because of the presence of gravitational 

acceleration. 

(Refer Slide Time: 13:49) 



 

So let us take the problem 2 two that we have considered and estimate the loss of 

mechanical energy due to gravity that is as compared to ideal burnout. What is the loss 

of mechanical energy under the action of gravitational acceleration? So, we bring in the 

idea of energy per unit mass of burnout. We say that, the velocity under ideal condition 

is 5873. 

 

So, energy of ideal burnout is 1.7246 × 107 in appropriate units. Now we have the 

velocity under gravity as 4342.7 m/s and altitude as 176727 m, consistent units. So, we 

calculate the energy as 
1

2
𝑉𝑔

2 + 𝑔ℎ𝑔. That comes out to be 1.1163 × 107 in the same 

units. So as a percentage, the loss turns out to be 35.2%, quite large; very significant 

loss that we have incurred. 

 

But then that is the problem that we have also seen earlier, that for a given burn rate, if 

it is low, you are going to incur a large loss of energy due to gravity. And if you want 

to reduce this, you must increase the burn rate. 

(Refer Slide Time: 15:34) 



 

We will leave this problem at this point. And then we will go over to the next solution 

of straight-line trajectory and bring in the effect of aerodynamic drag and the loss that 

happens because of the aerodynamic drag. 

(Refer Slide Time: 15:57) 

 

So let us consider the altitude corrected solution given in problem number 3. So, in 

problem number 3, we have corrected the altitude because of the change in gravity. And 

that is the new gravity value is what we have used for terminal velocity. So, we have a 

velocity of 4380 odd m/s and the altitude of almost 180 km that is 179 odd km. 

 

And now we bring in the idea of a mass of rocket at liftoff of 500 kg. We say that it has 

a diameter of 2 m. And we are going to use the bluff body drag value of 𝐶𝐷 with drag 



coefficient value of 1. Now let us assume that the peak of the drag acceleration is going 

to occur around 50 seconds. 

 

And based on that we are going to bring in our simplified drag modeling and then we 

will try to find the impact of this on the terminal performance and find out in what way 

is the approximation valid or applicable and what is the overall order of magnitude of 

the impact of the drag. 

(Refer Slide Time: 17:32) 

 

So let us first obtain the velocity at altitude solutions at 𝑡 = 50𝑠. So, at 𝑡 = 50𝑠 the 

amount of propellant that we are going to consume will be given by, because it is a 

constant burning rate, I know that I will burn all the propellant in 156 seconds. So, in 

56 seconds, I would be burning only a small amount of propellant. So, propellant burned 

ratio becomes only 0.2885. 

 

Now with this I can go and calculate the velocity which is nothing but the ideal velocity 

at t equal to 50 seconds minus the gravity adjusted velocity. So, this turns out to be 868 

m/s. So, at 𝑡 = 50𝑠, the rocket would have acquired a velocity of 868 m/s. Let us do 

the same thing for the altitude. So again, substitute the same expression of 𝜆𝑡=50 into 

this. 

 

The time is already specified as 50 seconds and by doing that, we show that it will reach 

an altitude of roughly about 8.5 km. So, these are the performance parameters under the 



corrected gravity value of 9.55 𝑚/𝑠2 at 𝑡 = 50𝑠 where we have assumed that the peak 

of the dynamic pressure or the acceleration would occur. 

(Refer Slide Time: 19:36) 

 

Once that happens, let us now use this information to find out the value of the drag, the 

drag acceleration and the average drag acceleration which is going to be used to 

calculate the modified terminal performance. So first we get the density from our 

atmospheric tables. At this altitude of 8.5 km, the density is 0.442 𝑘𝑔/𝑚3. 

 

Using this density, the velocity and the surface area because of the diameter of 2 m that 

is radius of 1 m and 𝐶𝐷 = 1, the total drag in this case is 523.1 N. Now the mass at this 

point is 𝑚0(1 − 𝜆𝑡=50). So that is 0.7115 × 𝑚0 which is 500 kg. So, this turns out to 

be 355.7 kg. 

 

Now the acceleration due to drag is nothing but the value of drag divided by this mass. 

So, turns out to be 1.47 𝑚/𝑠2 that is the peak value. And from our rectangular 

approximation that we have been using, the average value of drag which is a constant 

is 0.735 𝑚/𝑠2. 

 

Now with this acceleration value, when we recalculate our velocity due to drag, it is 

velocity due to gravitational part −0.735 into the total trajectory duration which is 156 

seconds and what we get is 4268.5. Now I want to point out an interesting observation. 

If we had not corrected for the gravity and drag, suppose we had neglected both the 

effects, which means we had not corrected the gravity for altitude. 



 

Which means we had used the sea level value of gravity and we had not included the 

drag; this is the velocity that you have predicted, 4243. But, if we correct the gravity 

value for altitude, it is a plus for us because performance improves. And then if we 

include the drag the deterioration of performance in terms of velocity is still not 

sufficient and that we get a velocity which is still higher than what you would get if you 

did not consider the correction because of altitude and drag. 

 

So, you will realize that, even if we do not consider the impact of correction to gravity 

because of altitude and if we ignore the drag in the first initial sizing of the rocket, we 

would get a fairly good idea of the rocket terminal performance from a design 

perspective. The change in altitude is from 179 to 170 km. The actual altitude that we 

have seen is of the order of about 176 km. 

 

So, we find that if we were to use these values of 4268 and 170.9, this would be more 

or less the performance that would be close to the performance which you are going to 

get because of only sea level gravity modelling and nothing else. Hi, so in this lecture 

or our tutorial, we have gone through a set of five cases starting from the ideal burnout 

to the impact of drag. 

 

And we have noted how the terminal performance gets influenced as we introduce the 

various corrections such as gravitational correction, correction to gravitational 

acceleration due to altitude and the correction in terminal performance due to the 

presence of atmospheric drag. 

 

And we find that in the initial stages if you are looking at a gross estimate of the terminal 

performance, just by introducing the sea level gravitational model along a straight-line 

motion, the performance that we generate is fairly representative of what we are going 

to get under various realistic scenarios. So, with that, we come to the end of this tutorial. 

Bye, and see you in our next tutorial and thank you. 

 

 


