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Variant Design Solution 

 

Hello and welcome. So, in this lecture, we will look at some of the details of the trade-

off ratio concept including its formulation and the solution in order to understand the 

implication of trade-off ratio as an important design tool. So let us begin. 

(Refer Slide Time: 00:51) 

 

So let us proceed with our discussion on trade-off ratio for variant design. 

(Refer Slide Time: 01:00) 



 

As I had mentioned in the previous lecture, trade-off ratios are nothing but the partial 

derivatives of the rocket performance equations with respect to two configuration 

parameters that is the structural mass or the propellant mass which we know directly 

influence the rocket performance in terms of either the burnout velocity or in terms of 

the mission payload mass fraction. 

 

Now while there can be requirements on performing a different mission because same 

𝑚∗ in most cases, the variants are required to perform the same mission for a different 

mass as we have seen in the examples in the previous lecture. 

 

So at least to understand the idea, we use the basic constraint that 𝑉∗ is an invariant 

which represents the spacecraft mission which is to be performed while we are going 

to look at the implication of changes in the stage to the change in the mission payload 

mass or payload mass fraction 𝜋∗. 

(Refer Slide Time: 03:01) 



 

So, in the present study, we will talk about a philosophy for tradeoff ratios, which we 

will assume that you do not want the 𝑉∗ to change and we would like to find out how a 

small change in the stage mass will influence the change in the payload mass. To do 

this, we make use of the 𝑉∗ expression to examine the applicable sensitivities. 

 

So let 𝑉∗ be the 𝑔0 ∑ 𝐼𝑠𝑝𝑖 ln
𝑚0𝑖

𝑚𝑓𝑖

𝑁
𝑖=1  is treated as a variant. Note that 𝑚0𝑖 and 𝑚𝑓𝑖 have 

already been defined by discussing the multi-stage rocket configurations. 
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So, we just recall those definitions for 𝑚𝑓𝑖 and 𝑚0𝑖 for 𝑖𝑡ℎ stage as 𝑚0𝑖 = 𝑚∗ + 𝑚𝑝𝑖 +

𝑚𝑠𝑖 , that is this configuration of the stage plus 𝑗 = 𝑖 + 1 which means the stages which 

are higher than the 𝑖𝑡ℎ stage right up to the end stage and their mass configuration in 



terms of 𝑚𝑠𝑗 + 𝑚𝑝𝑗. We know that 𝑚𝑓𝑖 is going to be 𝑚0𝑖 − 𝑚𝑝𝑖 so that it is 𝑚∗ +

𝑚𝑠𝑖 + the same sum. 

 

Now we can write the ideal burnout velocity in terms of the above expressions as 

follows. 
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So, 𝑉∗ can be expressed as 𝑔0 ∑ 𝐼𝑠𝑝𝑖
𝑁
𝑖=1  and now I open up the expression for 𝑚0𝑖 and 

𝑚𝑓𝑖. It is the ratio of 𝑚∗, 𝑚𝑝𝑖, 𝑚𝑠𝑖. What you realize is that now this 𝑉∗ we would like 

to keep in variant by making changes to 𝑚𝑠𝑖, 𝑚𝑝𝑖 & 𝑚∗. And this is the primary 

objective of this whole exercise. 

 

But this is not a straightforward exercise because of the fact that 𝑉∗ is a discrete sum of 

individual stage contributions. This is the first thing that we need to note that it is a 

discrete sum. So, what it means is that, this is essentially a piecewise continuous 

function. It is not a continuous function. 

 

Which means, as you go from stages 𝑖 = 1 𝑡𝑜 𝑁, the numbers change and because of 

which there are sudden jumps in the masses at the interface points and we need to 

generate the partial derivatives to understand the sensitivities of a piecewise continuous 

function. Of course, from the calculus, you would have probably dealt with these kinds 

of functions for arriving at their derivatives. 

 



So, I presume you know how this can be done. In case there are certain gaps, I would 

suggest that you go through and refresh this material again just to understand the 

implication of taking a derivative of a piecewise continuous function. 

(Refer Slide Time: 07:42) 

 

There is another calculus concept that we are going to use. As 𝑉∗ is a function of many 

variables, instead of talking about a derivative of 𝑉∗, we talk about variation of 𝑉∗. So, 

we introduce the concept of a variation which is kind of a total derivative. Total 

derivative in the calculus is defined as a linear combination of the individual partial 

derivatives with respect to all the variables of the function. 

 

In the present case, there are three variables that influence the 𝑉∗ that is 𝑚∗, 𝑚𝑝𝑖 and 

𝑚𝑠𝑖. And that is why our 𝑉∗ will be defined in the context of variation as partial 

derivatives corresponding to these three quantities. So let us bring in this idea through 

this simple formulation. So, we define 𝑑𝑉∗ as a small variation in the 𝑉∗, the total 

variation, as a linear combination of the partial derivative of 𝑉∗ with respect to 𝑚𝑠𝑖 into 

a small change in 𝑚𝑠𝑖. 

 

Plus, a partial derivative of 𝑉∗ with respect to 𝑚∗ for a small change in the 𝑚∗ that is 

Δ𝑚∗. Now even though there are three variables, what we will do is that we will take 

two at a time which means that we will take 𝑚∗ and 𝑚𝑠𝑖 as one group and 𝑚∗ and 𝑚𝑝𝑖 

as another group. And because we are using partial derivatives it is a linear formulation. 

 



So that in case we need to change both 𝑚𝑠𝑖 and 𝑚𝑝𝑖, it would just be a linear 

combination of these two separately. Once we make use of this philosophy, we just say 

that if 𝑉∗ is a constant, then this small variation in 𝑉∗ must be 0, which means that the 

𝑑𝑉∗ is equal to 0. 

 

And that gives us a relation between a small change in 𝑚∗ with respect to a small change 

in 𝑚𝑠𝑖 as the ratio of two partial derivatives 
𝑑𝑉∗

𝑑𝑚𝑠𝑖
 and −

𝑑𝑉∗

𝑑𝑚∗
. So, we immediately see 

that the sensitivity of the payload mass for a small change or a unit change in the 

structural mass of 𝑖𝑡ℎ stage is nothing but negative of the ratio of the two partial 

derivatives, one with respect to 𝑚𝑠𝑖 and other with respect to 𝑚∗. 

 

We now repeat this exercise for the 𝑚𝑝𝑖 and we similarly find that the sensitivity of 𝑚∗ 

with respect to 𝑚𝑝𝑖 is again negative of the ratio of the two partial derivatives of 𝑉∗ that 

on the numerator with respect to 𝑚𝑝𝑖 and in the denominator with respect to 𝑚∗. The 

above expression for sensitivity establishes the possible changes in 𝑚∗ due to the 

change in 𝑚𝑠𝑖 and 𝑚𝑝𝑖 one at a time for a constant 𝑉∗. 

 

Here it is also worth noting that I could easily have done this exercise for keeping 𝑚∗ 

equal to constant and then take in the 𝑚∗ derivative with respect to 𝑚𝑠𝑖 and 𝑚𝑝𝑖 and 

then I could have defined the partial derivatives for the sensitivities which would give 

me a different 𝑉∗ for keeping the 𝑚∗ constant. 

 

So, the same formulation strategy is entirely applicable for the other case as well. Now 

we need to understand how we can evaluate these partial derivatives. 
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Of course, we realize that these partial derivatives, two for each stage please remember, 

that for each stage there are two partial derivatives, one with respect to the structural 

mass, one with respect to the propellant mass. And if there are 𝑛 stages, there are going 

to be 2𝑛 such parameters which will establish the sensitivity of the velocity to both 𝑚∗ 

and 𝑚𝑠𝑖 and 𝑚𝑝𝑖. 

 

And again, let me reemphasize that the evaluation of these partial derivatives has to be 

carried out in the context of velocity being a discrete function or a piecewise continuous 

function of 𝑚𝑠𝑖, 𝑚𝑝𝑖 & 𝑚∗. So let us try and demonstrate this for a simple case of a 2-

stage rocket to understand the procedure involved and how these piecewise continuous 

functions can be differentiated to give the sensitivities. 
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So let me just for the sake of demonstration, open up the sum and write 𝑉∗ as the sum 

of velocities coming from the two stages that is first stage and the second stage. 

Similarly, let me write 𝑚01, which is the starting mass of the first stage in the long hand 

fashion of 𝑚∗ + 𝑚𝑠1 + 𝑚𝑝1 + 𝑚𝑠2 + 𝑚𝑝2. 

 

The reason why I am writing like this is that my process of differentiating a piecewise 

continuous function will become simpler when I express it in this form and will be 

clearly visible as to what the steps are involved. Similarly, I write 𝑚𝑓1 by subtracting 

𝑚𝑝1 from 𝑚01 so that I will get 𝑚∗ + 𝑚𝑠1 + 𝑚𝑠2 + 𝑚𝑝2. And similarly, the starting 

mass for the second stage that is 𝑚02 as 𝑚∗ + 𝑚𝑠2 + 𝑚𝑝2. 

 

And 𝑚𝑓2 as 𝑚∗ + 𝑚𝑠2. As there are only two stages the final mass of the second stage 

would be just the 𝑚∗ and the structural mass of the second stage at which the final 

velocity we would have achieved. 
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Let us now take the partial derivatives of the velocity equation the way it is written. 

And immediately we realize that as both 𝑚01 and 𝑚𝑓1 and 𝑚02 and 𝑚𝑓2 contain the 

𝑚∗. And it is a logarithmic function of 𝑚∗. We know that when we differentiate a 

logarithmic function, we get 1 by that function. So, I can easily write ln
𝑚01

𝑚𝑓1
= ln 𝑚01 −

ln 𝑚𝑓1. 

 



And then when I differentiate these two, ln 𝑚01 when I differentiate, I get 
1

𝑚01
. And 𝑚∗ 

differentiated with respect to 𝑚∗ gives me unity, so no problem. And similarly, I get 

1

𝑚𝑓1
 when I differentiate ln 𝑚𝑓1 . Similarly, when I differentiate 𝑚02 and 𝑚𝑓2, I get 

1

𝑚02
 

and 
1

𝑚𝑓2
. And this becomes my 

𝑑𝑉∗

𝑑𝑚∗
 expression. 

 

When I look at 𝑉∗ expression, I immediately realize that when I use 𝑚𝑠1, the variation 

is only with respect to the structural mass of first stage. So, the structural mass of second 

stage is constant. So, the partial derivative terms will contain only the term 

corresponding to 𝑚𝑠1 which appears in 𝑚01 and 𝑚𝑓1 because in 𝑚02 and 𝑚𝑓2, 𝑚𝑠1 does 

not exist. 

 

Because we have removed that mass and this is the implication of a piecewise 

continuous function being differentiated. I hope you have understood the philosophy. 

But maybe you can work with this a little more just to understand the step. Once we 

understand this, we do the same thing for 𝑚𝑠2. And now you realize that 𝑚𝑠2 is part of 

both 𝑚01 and 𝑚02 as well as part of 𝑚𝑓1 and 𝑚𝑓2. 

 

So, you get the same expression as what you would get for differentiating with respect 

to 𝑚∗. So, you can see that 𝑑𝑉∗ by 𝑚𝑠2 is same as 
𝑑𝑉∗

𝑑𝑚∗
 while 

𝑑𝑉∗

𝑚𝑠1
 is different. 
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With this, let us now go back to our sensitivity definition that is ratio 
δ𝑚∗

δ𝑚𝑠1
. And we find 

that the ratio is as ratio of two partial derivatives. And when I take the ratio of 
δ𝑚∗

δ𝑚𝑠2
, I 

suddenly find that both numerator and denominator are the same so I get -1. We will 

talk about this idea a little more. But at this point it is sufficient to mention that a small 

change in 𝑚𝑠2 will generate an equal and opposite change in 𝑚∗. 

 

Which means that if I reduce the structural mass by 1 kg, it immediately allows me to 

add 1 kg in the payload mass and that tells you that this is the best possible efficiency 

that one can get. That you are trading off 1 kg of structural mass with 1 kg of payload 

mass. Conversely, if you want to increase 1 kg payload mass you must reduce 1 kg of 

structure from the second stage. Of course, this number is going to be less than 1 in case 

of 𝑚𝑠1. 

 

So obviously, the efficiency is lower. So, for the same change desired in 𝑚∗, you may 

need to make larger changes in the structure of the first stage as compared to the second 

stage. And this establishes the fact that from a structure perspective, the second stage is 

100% efficient on the final stage. Now the same logic could be extended to 𝑛𝑡ℎ stage 

so that the last stage is the most efficient from structural point of view. 
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Let us now do this exercise for the propulsion mass. So, I am not going to go through 

the details. We can again generate the derivative 
𝑑𝑉∗

𝑑𝑚𝑝1
 and 

𝑑𝑉∗

𝑑𝑚𝑝2
, and we already have 

𝑑𝑉∗

𝑚∗
 and so we can take the ratios directly as we have seen earlier. 
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So now we are going to get the two efficiencies that is 
δ𝑚∗

δ𝑚𝑝1
 and 

δ𝑚∗

δ𝑚𝑝2
 in terms of the 

𝑚01, 𝑚𝑓1;  𝑚02, 𝑚𝑓2. And an interesting feature is that 𝐼𝑠𝑝 also directly appears in these 

two expressions. Now of course, I could have independently generated the same 

sensitivities with respect to 𝐼𝑠𝑝 by keeping both 𝑉∗ and 𝑚∗ in a particular manner. 

 

But even without doing that, I realize that if 𝑚01, 𝑚02 these quantities do not change. 

Which means if my structural mass does not change, then if there is a change in 𝐼𝑠𝑝, I 

can use this partial derivative expression directly to show how a small change in 𝐼𝑠𝑝 

will affect for a constant propulsion mass the change in 𝑚∗. It is possible for me to 

reinterpret these algebraically. 

 

I suggest that you try this on your own, just to understand the implication of the 

discussion. 
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Once we have that, we can now directly talk about the sensitivities. And in a generic 

sense, we now see the 
𝑑𝑚∗

𝑑𝑚𝑠𝑁
= −1, is always less than 0. And 

𝑑𝑚∗

𝑑𝑚𝑝𝑖
 this expression, is 

always a positive quantity. And this is another point that you need to understand that 

the trade-off ratio for structural mass is inversely related that in order to increase the 

payload mass, I must reduce the structural mass that is the relation. 

 

Whereas in order to increase the payload mass, I must increase the propellant mass. So, 

if I increase the propellant mass or if I increase the 𝐼𝑠𝑝, I will get a higher 𝑚∗. Whereas, 

if I decrease the structural mass, I will get a higher 𝑚∗ or if I increase the structural 

mass, I get a lower payload mass. 
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Let us just understand these relations through a simple example for a rocket which has 

the following mass configuration. So, it is 2-stage rocket with heavy first stage 

propellant of 21,000 kg and a structure of close to 1300 kg with an 𝐼𝑠𝑝 of 261 seconds. 

The second stage has propellant of 3850 kg, the structure of 360 kg, an 𝐼𝑠𝑝 of 324 

seconds, and the payload mass of 668 kg. Let us try and obtain this trade-off ratios. 
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Now we just do the substitution in the expression. I suggest that you do that exercise 

yourself. Just to confirm, I am just giving you the 𝑚01, 𝑚𝑓1, 𝑚02 & 𝑚𝑓2 which can be 

obtained from the data that is given in the previous sheet. And with those I can evaluate 

the partial derivatives and then take the ratio of the partial derivatives. And I find that 

𝛿𝑚∗

𝛿𝑚𝑠1
 is -0.116. 

 

What it means is that, if I reduce the structural mass of the first stage by 1 kg, I will be 

able to add only 116 grams of payload. But if I make the same change in the second 

stage structural mass, I can add full 1 kg or 1000 grams. So, you can see that second 

stage is 100% efficient. With regard to propulsion find that the first stage is highly 

inefficient that for 1 kg propellant mass increase I am only able to add on 34 grams of 

payload. 

 

Of course, the second stage is definitely better than the first stage. So that the same 1 

kg propellant gives me 119 grams of payload. This is because of two reasons. One, the 

second stage is more efficient and more importantly, it also has a higher 𝐼𝑠𝑝 compared 



to first stage. And now we realize that most launch vehicles try to use a higher 𝐼𝑠𝑝 fuel 

in the higher stage and now you will understand why. 

 

Why you do not use solid propellant in the higher stages? Because it is a lower 𝐼𝑠𝑝 fuel, 

it will give you a lower efficiency of the stage so that in case you want to do a trade-

off, it is not going to be a very efficient design. Whereas, if you use the cryogenic fuel 

in the higher stages, then even a small saving of structural mass or a small saving in 

case in the propulsion mass is going to significantly add to the payload mass and 

becomes an extremely useful way of creating a variant. 
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So, to summarize, we see that trade-off ratios are an elegant mechanism to understand 

the launch vehicle state sensitivities. We also note that a small change in configuration 

based on the sensitivity in the vicinity of the parent configuration has the potential to 

preserve the optimality of the solution. Hi, so in this lecture, we have seen a simple 

mechanism through which we can set up the solution for the sensitivities of the stage 

under the constraint that the 𝑉∗ is a constant. 

 

And we have obtained the solutions and understood that within the limitations of the 

assumptions that we have made, it is still an extremely useful idea for designing a 

modified mission with minimal computational effort just by looking at the stages which 

are more efficient and the amount of saving in the mass can lead to improvement in the 

payload mass capability. 

 



With this, we close our discussion on the serial, the series or what is also called the 

restricted staging as a concept for multi-stage rocket design. We will now conclude this 

idea in the next lecture by looking at the concepts of parallel staging. That is if you add 

a booster stage, then in what way the configurations change, what are the issues 

involved with the booster stage, and what kind of benefits we can derive by making use 

of parallel staging as compared to a serial staging or a restricted staging. So, bye. See 

you in the next lecture and thank you. 

 

 


