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Approximate Staging Solution 

 

Hello and welcome. So, in this lecture we will explore the possibility of an approximate 

solution strategy which still provide a reasonably optimal solution, but with smaller 

computational effort. We will also look at the overall implication of the methodology and its 

relation to the loss of accuracy in the given solution. So, let us begin.  
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Let us proceed with the approximates staging solution procedure and understand the elements 

that provide us with this particular simplification. 
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As was mentioned in the previous lecture it is an alternative to the Lagrange technique which 

we have seen earlier in which we drop one equation and solve the residual 𝑁 × 𝑁 system of 

equations. This is the first step which means that among the 𝑁 + 1 equations and 𝑁 + 1 

unknowns. We drop one equation so that we do not have to drop the or we do not have to 

actually include the Lagrange variable 𝜆 that we have been doing earlier.  

 

We realize that this methodology is going to provide suboptimal solutions because now it is no 

longer an exact formulation. However, you will find that in many cases we can use these 

solutions to initiate a more rigorous design iteration which in many cases require an initial 

guess of the solution.  
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The question is how does one decide on the equation to drop? While there can be many options 

for dropping one equation. This can be achieved exactly if one of the partial derivatives is zero 

throughout the design space. Now, this is something which is not really very clearly visible at 

the stage of formulation, but if such a thing happened and we were able to pick that particular 

partial derivative which was zero throughout the design space. 

 

Then that equation is automatically exactly specified and satisfied at all the places which 

obviously means that if we drop this partial derivative and the equation corresponding to it 

there will be no error committed as far as the solution is concerned because all other points the 

remaining ones will together pick a point which is optimal from their perspective and it is 

optimal also from this particular design variable because anyway this is the minimum value 

that this design variable has.  

 

There are two aspects that become bottleneck in this case. One, there is no way of knowing 

upfront which of those equations will result in a zero-partial derivative throughout the design 

space. The second point is the design space may have multiple optima in which case it is 

possible that we may pick a solution close to a local optimum, but may completely miss a 

global optimum.  

 

However, with these two limitations still the methodology has a reasonable value in trying to 

reduce the computational effort and still giving a reasonably good initial guess in situations 

where there is only one optimum in the design space. So, which means if there are functions 

which are such that there is one maxima or a minima in the design space then these 

methodologies can still work with reasonable degree of accuracy provided, we hit upon the 

right partial derivative equation to drop.  
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The reason why this is true is that in such a case the solution obtained from the remaining 

equations will automatically become optimal. But we must realize that the sensitivity of 

objective function to design variable is not same for all the partial derivatives particularly in a 

general context. So, obviously depending upon the equation that we drop we may be 

somewhere in the vicinity of the exact optimal point.  

 

As I mentioned these are approximate, but in many cases can serve as good starting points for 

a more rigorous design exercise.  
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Now in order to ensure that the loss of accuracy is not excessive, we satisfy the constraint 

exactly which means that the constraint is always exactly satisfied by one of the partial 

derivatives is probably only approximately satisfied and this gives us another benefit that the 



constraint equation can be used to substitute one design variable as a function of the remaining 

𝑁 − 1 design variables.  

 

The benefit that this gives is that the remaining partial derivatives are only 𝑁 − 1. So, 

effectively we need to evaluate only 𝑁 − 1 partial derivatives and not 𝑁 partial derivatives and 

these 𝑁 − 1 partial derivative equations in terms of 𝑁 − 1 design variables can be solved 

simultaneously to obtain solution for 𝑁 − 1 design variables. 
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And once you do that, we substitute this solution back into the one design variable which is a 

function of the remaining 𝑁 − 1 design variables and in the process, we get solution for all the 

𝑁 design variables.  
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Let me show you the basic formulation that this strategy is connected to. So, let us assume that 

we are going to choose 𝜋1 to be the design variable for which the partial derivative will not be 

evaluated. So, now what I do is I take this and express 𝜋1 as a function of the remaining 𝜋’s 

that is from 𝜋2 to 𝜋𝑁 and this is my constraint relation.  Here, of course I have used the velocity 

constraint so 𝑉∗ is coming here. 

 

And then I write my 𝜋∗ which is product of all the 𝜋𝑖
′s, but because I have removed 𝜋1 it will 

be a function on only 𝜋2 to 𝜋𝑁 and that is why I need to evaluate only those 𝑁 − 1 partial 

derivatives going from 𝑗 = 2 to 𝑁. So, these represent only 𝑁 − 1 algebraic equation and the 

𝑁𝑡ℎ algebraic equation is my constraint relation in which once I evaluate the 𝑁 − 1 design 

variables 𝜋2 to 𝜋𝑁. 

 

I will substitute that into this and evaluate 𝜋1. When I am talking about the 𝜋∗ as the constraint 

then again, I use this expression that is ln 𝜋1 = ln 𝜋∗ − ∑ ln 𝜋𝑖
𝑁
𝑖=2  and this is the equation which 

now I am going to substitute in my objective function for 𝜋∗ and the objective function which 

is my 𝑉∗. So, 𝑉∗ will contain only 𝜋2 to 𝜋𝑁 and then I differentiate this again 𝑗 going from 2 to 

𝑁.  

 

So, I only have 𝑁 − 1 partial derivatives. So, I solve for these 𝑁 − 1 partial derivative to solve 

for 𝜋2 to 𝜋𝑁 and substitute back into this constraint relation to obtain 𝜋 value.  
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Let us demonstrate this idea through the example that we have seen in the previous lecture. So, 

again let us consider a two-stage rocket with the same 𝜀 that is 0.15 and the same 𝐼𝑠𝑝 of 240s 

and I would like the velocity to be 4,000 𝑚/𝑠. We recall that we had done this exercise for a 

two-stage sounding rocket and we have obtained a solution.  

 

Please keep those solutions in mind because now we are going to see what this particular 

methodology gives as far as those solutions are concerned.  
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So, the solution is as follows. We first express 𝜋1 in terms of 𝜋2 because that is the only other 

unknown. So, I can solve for 𝜋1 from this. So, the following is the expression for 𝜋1 that is 

0.2152

(0.15+0.85𝜋2)
− 0.1765 that is the solution of 𝜋1 in terms of 𝜋2. My ln 𝜋∗ is ln 𝜋1𝜋2. So, this 

ln 𝜋∗ is function of only 𝜋2 because it is only function of a single variable. 

 

I need only one partial derivative of 𝜋∗ with respect to 𝜋2 which I evaluate and then I get the 

constraint relation saying that my 𝜋∗ is this expression and with that expression I get a quadratic 

equation for 𝜋2. Again, you will realize that because your 𝜋∗ derivative is going to give us the 

quadratic equation only one of the 𝜋2 solutions will be consistent other 𝜋2 solution will be 

inconsistent. I have not mentioned the inconsistent solution, but I am mentioning the consistent 

solution and you immediately see that the 𝜋2 turns out to be 0.327. 

 

And correspondingly first take this 𝜋2 and substitute into my constraint solution of 𝜋1 I get 𝜋1 

as 0.326. I realize that I have got an exact solution. The exact solution for this problem through 



the Lagrange Multiplier Method was 0.327 for both the stages. Here, you can see there is a 

marginal leakage possibly because of the truncation error in the decimal places.  
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Let us now do the same exercise for unequal stages. So, we have the problem of Angara 1.2 

and let us redesign this to have a burnout velocity of 8338 𝑚/𝑠 with the fixed parameters so it 

is a velocity constraint problem. Let us determine the approximate stage wise payload ratios.  
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So, the solution in this case as follows. So, again I take the 𝜋1 and substitute into the constraint 

relation with the velocity of 8338 𝑚/𝑠 and get an expression of 𝜋1 in terms of 𝜋2 as 

0.0694

(0.089+0.911𝜋2)1.1048 − 0.0776. We define 𝜋∗ as product of these two differentiate this will 𝜋2. I 

have skipped those intermediate steps, but my suggestion is that you verify those steps. 

 



And once you verify those steps you can obtain the solution for 𝜋2 as 0.19 and if you take this 

0.19 as 𝜋2 and substitute into 𝜋1 relation you can show that 𝜋1 will be 0.22. Now, how do these 

compare with the actual values? I leave this exercise to you, but you will find that these 

numbers are not exactly equal to the 𝜋1 and 𝜋2 numbers that we had obtained for this problem 

using the Lagrange Multiplier Method.  

 

Now option 1 and option 2 as you can see are by interchanging the variables and you will see 

that there is now a marginal difference between these two solutions. In one case if you get 𝜋2 

in terms of 𝜋1 as a next constraint and then differentiate with respect to 𝜋1 you are actually 

ignoring the partial derivative corresponding to 𝜋2 whereas in the other case you are ignoring 

partial derivative with respect to 𝜋1. 

 

You will realize that these two provide two different solutions as we had anticipated that as a 

sensitivity of the partial derivative for different design variables is going to be different you are 

going to get different solutions depending upon which particular partial derivative you drop.  
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So, to summarize the approximate staging solution method simplifies the solution steps that is 

clear to us. However, we also see that it results in loss of accuracy and moreover that loss of 

accuracy is also depended on the equation which is ignored. So, in this lecture we have seen 

the methodology for obtaining the approximate solution by dropping one partial derivative 

equation.  

 



And we realize that while we get a solution which is in the vicinity of the actual optimal solution 

it is not really the optimal solution and that it varies depending upon which particular design 

variable, we choose for dropping the partial derivative. However, we still note that within the 

context of the objective for this exercise we still get a reasonably good solution as the starting 

point for any rigorous design exercise which would ultimately give us the exact optimal 

solutions.  

 

With this, we have completed our discussion on the optimal solutions for staging. In the next 

lecture, we will look at a related concept called the concept of variant of a launch vehicle which 

is an extremely important, practical concept which is commonly practiced by most space 

agencies to minimize their cost of inventory as well as cost of launch vehicle development. So, 

bye see you in the next lecture and thank you.  


