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Lagrange Solution 

 

Hello and welcome. In continuation to our last lecture, we will introduce the ideas of optimal 

staging. We will now look at the basic technique of optimal multistage design through the 

Lagrange’s method which provides optimal solution using one extra variable called the 

Lagrange Multiplier. And we will probably also look at the possibilities of alternate ways of 

arriving at the optimal solution. So, let us begin.  
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So, let us begin our discussion on the optimal staging solution.  
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Given below is a broad procedure for solving rocket sizing problem in the present context. So, 

the first step is that we solve all 𝑁 partial derivative equations for individual 𝜋𝑖 ’s in terms of 

the Lagrange parameter 𝜆. So, all the N design variables 𝜋𝑖 ’s are expressed in terms of the 

Lagrange parameter 𝜆. Next, all these solutions of 𝜋𝑖 ’s which are in terms of 𝜆 are substituted 

into the constraint equation which then becomes an equation in 𝜆.  

 

We can solve this equation it is an algebraic equation and the solution of 𝜆 so obtained is then 

substituted back into the 𝜋𝑖 ’s that we have already expressed in terms of 𝜆 and we obtain all 

the 𝜋 solutions. So, we see that in this procedure we first have to express all 𝜋𝑖 ’s in terms of 𝜆 

which is essentially an algebraic substitution and then we solve an 𝑁𝑡ℎ  order algebraic equation 

in 𝜆 which is arrived from the constraint relation. 

 

And once the 𝜆 is obtained we go back to those expressions and simply substitute the value of 

𝜆 and evaluate 𝜋𝑖 ’s.  
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So, let us look at this technique through the two options that we have established that is in one 

case the 𝑉∗ will be objective function and the 𝜋∗ will be constraint and in the other case 𝜋∗ will 

be the objective function and 𝑉∗ will be the constraint. So, let us first look at the case where 𝑉∗ 

is the objective function. So, we use the augmented function 𝐻𝑉 as we have seen earlier which 

is nothing but −g0𝐼𝑠𝑝𝑖
∑ 𝐼𝑠𝑝𝑖

ln[𝜀𝑖 + (1 − 𝜀𝑖)𝜋𝑖]
N
𝑖=1  that is the objective function part. 

 

And then we have the constraint part that is 𝜆(ln 𝜋∗ − ∑ ln 𝜋𝑖
N
𝑖=1 ). Now, we construct the N 

partial derivatives of the above augmented objective function by differentiating 𝐻𝑉 with respect 

to 𝜋𝑖 ’s and please note because these are partial derivatives, we use the basic strategy of partial 

derivative that all terms involving only 𝜋𝑖 ’s will be non-zero. 

 

All the terms which involve 𝜋𝑖−1 or 𝜋𝑖+1  they all go to zero. The moment we do this we realize 

that this partial derivative will contain only terms corresponding to 𝜋𝑖 . So, we get this derivative 

as 
𝑔0 𝐼𝑠𝑝𝑖

(1−𝜀𝑖)

𝜀𝑖+(1−𝜀𝑖)𝜋𝑖
+

𝜆

𝜋𝑖
= 0 and this is an algebraic relation from which we can solve for 𝜋𝑖 =

−𝜆𝜀𝑖

(1−𝜀𝑖)(𝜆+g0 𝐼𝑠𝑝𝑖
)
 .  

 

So, these are the relations for all the 𝜋𝑖 ’s in terms of the fixed parameters 𝜀𝑖 and the 𝐼𝑠𝑝𝑖
 and 

the Lagrange Multiplier 𝜆. Now, the next step is to substitute these solutions of 𝜋𝑖 ’s  into the 

constraint relation. So, we write down the constraint relation as this product that is pi star 

constraint relation is ∏
−𝜆𝜀𝑖

(1−𝜀𝑖)(𝜆+g0𝐼𝑠 𝑝𝑖
)

𝑛
𝑖=1 .  



 

We also know that once we obtain the 𝜆𝑖 ’s the optimum velocity will be the 

−g0 ∑ 𝐼𝑠𝑝𝑖
ln[𝜀𝑖 + (1 − 𝜀𝑖)𝜋𝑖 ]𝑛

𝑖=1 . And we immediately realize that a known value of 𝜋∗  which 

is the constraint is going to fix the solution of 𝜆 and because it is a product on the right-hand 

side it is clearly visible that we will get an algebraic equation of power 𝑛 in 𝜆.  
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Let us now look at the counter part of this particular solution where we would like to maximize 

𝑚∗ or in this particular case the 𝜋∗  the payload fraction with 𝑉∗ as the constraint. So, in this 

case we use the augmented objective function 𝐻𝜋 where the first term that is ∑ ln 𝜋𝑖
𝑛
𝑖=1  is the 

objective part coming from the 𝜋∗ and then we have the constraint error multiplied by the 

Lagrange Multiplier 𝜆.  

 

Again, we go through the same process of differentiating this augmented function with respect 

to 𝜋𝑖  and similarly we get only 𝜋𝑖  terms in this. And by solving for 𝜋𝑖 , we get an expression 

for 𝜋𝑖  in terms of 𝜀𝑖 , 𝐼𝑠𝑝𝑖
 and 𝜆𝑖 as 

−𝜀𝑖

(1−𝜀𝑖)(1+𝜆g0𝐼𝑠 𝑝𝑖
)
. So, you can see that this expression is 

different from the expression that we obtain when we use 𝑉∗ as the objective function then we 

substitute these values of 𝜋𝑖 ’s into the constraint relation that is 𝑉∗ constraint. 

 

And then once we do that, from this constraint relation again we will get an 𝑛𝑡ℎ order algebraic 

equation in 𝜆 whose solution will give us the value of 𝜆 which will fix the solution for all the 

𝜋𝑖 ’s and using those values of 𝜋𝑖 ’s we can then obtain the optimal value of 𝜋∗. Here, the known 

𝑉∗ is going to fix the value of 𝜆. So, we have seen from these two solution procedures that in 



both the cases the constraint is the one which will fix the solution of the weightage 𝜆 which is 

the coupling parameter for all the payload ratio 𝜋𝑖 ’s and then it fixes their values in relation to 

the constraint that is applied.  
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Now, there are certain special cases which we can examine. So, the first special case that is of 

interest is that if we had the same structural technology and the same propulsion technology to 

be used in various stages of the rocket what would happen? So, this is denoted as the equal 

stages which means all stages have equal 𝜀 and equal 𝐼𝑠𝑝 . In that case, we assume that 𝜀𝑖′𝑠 are 

all epsilon and 𝐼𝑠𝑝𝑖
’𝑠 are all 𝐼𝑠𝑝 . 

 

And we substitute these into the expression for 𝜋𝑖 ’s you will immediately notice from this that 

all the 𝜋𝑖 ’s are going to be the same because all the 𝜋𝑖 ’s are going to be the same it is now a 

simpler algebraic equation for 𝜆 that we get from the constraint and by putting that equation 

we redefine an additional parameter 𝛽 as 
𝑉∗

𝑁g0 𝐼𝑠𝑝
 where 𝑉∗ is the velocity constraint.  

 

And the 𝜋 for every stage is 
𝑒−𝛽−𝜀

1−𝜀
 because all the 𝜋’𝑠 are the same the 𝜋∗  is nothing, but 𝜋 𝑁. 

We realize that this particular solution in an extremely simple representation if you have the 

same structure and the same propellant to be used in all the stages. Of course, if either the 

structure or the propellant or both are different then obviously this formula is not applicable 

and we must use the expressions as given in the previous two derivations.  
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Let us look at the same thing for 𝑚∗ or 𝜋∗ constraint. So, in this case because 𝜋∗  is a constraint 

it can be shown that all the 𝜋’𝑠 will be same because all the 𝜋’𝑠 are same the 𝜋 will be nothing, 

but the √𝜋∗
𝑁 . So, directly that is the solution for a stage payload ratio and the 𝑉∗ now can be 

obtained directly from this value of 𝜋. 

 

So, we realize this when we use this simplification of equal stages the solution simplifies 

greatly.  
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Let us now demonstrate these expressions through couple of examples. So, let us first look at 

the case of a two-stage sounding rocket having equal stages that is it has 𝜀1 = 𝜀2 = 0.15. Let 

us try and determine the optimal 𝜋 and the lift off mass 𝑚0 for 𝑚∗ of 10 kg if 𝑉∗ required is 

4,000 𝑚/𝑠 while burning a propellant of 𝐼𝑠𝑝 = 240𝑠. 
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So, the solution is as follows. Let us go through the steps one by one. So, let us first calculate 

𝛽 which is 
𝑉∗

𝑁g0𝐼𝑠𝑝
 as it is a two stage it is 4,000 which is the 𝑉∗; 

4000

2×9.81×240
. So, we get a 𝛽 value 

of 0.8494. Substituting this into the expression for 𝜋 which is 
𝑒−𝛽−𝜀

1−𝜀
 we get 𝜋1 as 0.3267. Now 

this is the value which is common for both the stages. 

 

So, 𝜋∗  becomes the (0.32672) which is nothing, but 0.1067. So, our payload fraction in this 

case which is maximizing 𝜋∗  is 0.1067 and for a payload of 10 kg the rocket must weight 

roughly around 94 kg. So, now we have designed an optimal sounding rocket which has a 

payload fraction of 0.106 and a 94 kg rocket will be able to launch a 10 kg payload.  
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Let us now flip the problem and look at when we want to put a payload constraint and see what 

is the solution that we get and what is the velocity that we are going to get. So, in the previous 

case the payload fraction that we had got was 0.106. Let us try for a slightly higher payload 

fraction of 0.15 and let us see what happens to the solution for the same set of structural ratios 

and same 𝐼𝑠𝑝  of 240.  
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So, this solution is as follows. Now we know that both the 𝜋’𝑠 are same which are nothing, but 

√𝜋∗ sand it is 0.387. So, now you can see in the previous case the 𝜋 was 0.32, but now the 𝜋 

has become 0.38. So, the payload ratios are higher because the payload ratios are higher now, 

I substitute these into my 𝑉∗ expression and what I get as 𝑉∗ is slightly lower.  

 

Instead of 4,000 𝑚/𝑠 I get only 3,466 𝑚/𝑠 and here there is now an important result that we 

need to note. There is a tradeoff between the burnout velocity and the 𝜋∗ . If you want a higher 

𝜋∗  you must accept a lower velocity or if you want a higher velocity, you must accept a lower 

𝜋∗ . 
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Let us now go to the general problem where we have stages which are not equal and it is useful 

to recall the example that we saw in the last lectures about Angara 1.2 and let us say that is the 

rocket that we want to redesign so that we get a payload fraction of 0.025 which means I want 

to use that rocket to achieve a higher payload fraction. So, my 𝜋∗  has been fixed at 0.025.  

 

And let me see what should be the optimal staging and what will be the corresponding optimal 

velocity which I am going to get. For the first stage the 𝐼𝑠𝑝  is given as 310 and the structural 

ratio is 0.072. For the second stage the 𝐼𝑠𝑝  is 342.5 and the structural ratio is 0.089. Let us now 

try to determine a new stage wise payload ratios and the corresponding ideal optimal velocity.  
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So, the old parameters if you remember you can go and check the 𝜋1 was 0.188 the 𝜋2  was 

0.124 and corresponding to these two the 𝑉∗ was 9,633.9 𝑚/𝑠. This was the solution that we 



had obtained when we were looking at the mass configuration. So, basically, we are having 

overall payload fraction which is not very large. Now, let us formulate this problem in the 

context of the solution that we have obtained.  

 

So, let me just go ahead and substitute the value of 𝜀1 and 𝐼𝑠𝑝1
× 𝜋1 expression and similarly 

𝜀2 and 𝐼𝑠𝑝2
× 𝜋2  expression and then I say that 𝜋1 and then I say that 𝜋1 and 𝜋2  which is 𝜋∗ 

must be equal to 0.025 that is the constraint, so this is our constraint relation. This results in 

with some amount of algebraic manipulation. A quadratic equation in 𝜆 for a two stage whose 

solution actually results in two values of 𝜆1 and 𝜆2.  

 

One is – 2055.9 other one is – 0.7140.7 we will pick one of those. In fact, I will leave you to 

verify which one we should pick because I will give you a hint that the other value will be an 

invalid value. It will give you an inconsistency in your solution which you should 

independently verify. So, I am not saying which one of these I have used, but using one of 

those I get two solutions 𝜋1 and 𝜋2  as 0.162 and 0.154. 

 

And I get 𝜋∗ as 0.029. Let me make a comment here we had started with the specification of a 

payload fraction of 0.025, but we have ended up with a value of 0.029. Kindly note that this is 

essentially because of the truncation errors which are part of the solution process that we do 

not use all the decimal places and particular when there are large numbers where manipulations 

results in smaller numbers. 

 

And if we ignore the higher digits, it is possible that we will result in little bit of error. You can 

actually verify this by doing a more accurate calculation and show that your pi star will be close 

to 0.025 which is the constraint that we have put and for these values of 𝜋1 and 𝜋2  you get 𝑉∗ 

as 8,337 𝑚/𝑠 and now we make a comparison. Originally where 𝜋∗ was smaller.  

 

But the 𝑉∗ was 9,600, but now because you want a higher 𝜋∗  where 𝑉∗ reduces to a smaller 

value.  
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Let us now look at whether this particular technique has an issue. It is a good technique we 

have already seen, but there are certain drawbacks that we must take note of. So, the first thing 

that it is seen is that we first need to get a solution for 𝜆 before we get a solution for 𝜋𝑖  at least 

for the unequal stages. For equal stages we are in a position to eliminate 𝜆 so that it is a simpler 

solution. 

 

But more often than not we are not going to get equal stage configuration. So, obviously it is 

going to require lot more computational effort. And then of course your 𝜆 is an 𝑁𝑡ℎ  order 

algebraic equation. So, there are two issues involved with it. As you increase the number of 

stages to 3, 4, 5 the order of algebraic equation is going to replace. So, you are going to get that 

many roots for 𝜆. 

 

And then you will have to pick the one which is going to give the feasible solution so that is 

going to be an additional effort to pick among the 𝜆 the value which will give you the correct 

and this can only be done by actually checking for all the 𝜆 values. This can become a tedious 

exercise if all the 𝜆s are real numbers. If in some cases, some of the 𝜆s appears as complex 

conjugate. 

 

They can straightaway discarded because 𝜆 has to be a real number that is the original 

interpretation with which this whole formulation has been done. So, it cannot be complex, but 

it can be a real number. So, if all the 5 roots for a 5th stage rocket is a real then you will have 

to check for all those 𝜆s before discarding saying which one of them is consistent solution and 

remaining are inconsistent solution. So, it becomes lot more computationally intensive.  
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So, is there an alternate way in which we can do this? The alternate way should be such that it 

simplifies the process of solution as compared to the procedure that we have used here, but 

should not compromise significantly on accuracy which means in some initial design stages 

we maybe in a position to sacrifice a bit of accuracy for computational comfort and simplicity 

of the solution process.  
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So, to summarize Lagrange Multiplier based technique is capable of providing optimum 

multistage solutions that are also in the closed form that is a great benefit, but we also note that 

we need to solve a slightly more complicated 𝑁𝑡ℎ  order algebraic equation for the Lagrange 

Multiplier. So, we have seen in this lecture the mechanization of the basic procedure proposed 

by the Lagrange for extracting optimal solutions of a constraint optimization problem. 



 

And we note that it becomes extremely simple in the context of equal stages and we have also 

seen that in the context of unequal stages the numerical effort is going to increase almost 

exponentially as number of stages are increased and that there is a need to look at an alternate 

methodology that will simplify the process without losing the accuracy which is what we will 

look at in the next lecture. So, bye see you in the next lecture and thank you.  


