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Curvilinear Motion Concept 

 

Hello and welcome. The material that we have discussed so far has made one fundamental 

assumption about the nature of the trajectory that it is along a straight line. As we have already 

seen earlier, this is an approximation which needs to be relaxed and we need to now look at the 

possibilities of generating a curvilinear trajectory for the ascent mission. So, in this lecture now 

we will look at one such option of generating a curvilinear trajectory. So, let us begin.  
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So, we are going to now talk about inclined or curvilinear trajectories.  
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So, let me recall this particular picture that we had seen earlier for a typical ascent mission 

starting from the lift off until the terminal point. As you can see, the flight path immediately 

after the lift off starts curving in such a manner that towards the end of the mission the velocity 

of the residual object is practically parallel to local horizon.  
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So, we realize that the vertical motion or motion along a radial line is used only for a very small 

part of the overall mission and for the most part ascent trajectories inclined and curvilinear in 

nature. Of course, at this point it is worth noting that this is mainly due to one of the terminal 

constraints that is imposed by the space craft mission that the inclination with respect to the 

local horizon should be zero or close to it which requires that a vehicle which is moving along 

a radial line. By the time it completes the mission, should be moving along a local tangent.  
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So, obviously you are going to require large amount of curvature while completing the ascent 

mission. In addition, it is worth nothing that earth itself is no longer a flat surface because you 

are going to move along a curved path and because of curvature of the earth the local tangent 

itself changes its inclination with respect to the tangent at the launch point. So, that by the time 

you reach the terminal point the amount of flight path angle changes that you are going to 

require are going to be significantly in excess of 90 degree. And this requires a different 

methodology for trajectory design and solution.  
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The first thing that happens in this case is that the motion instead of along a straight line is a 

plane described by the radial line and the tangent. And for that we need a two-dimensional 

model for the motion. Also, we need to realize the thrust which is the primary force for 



generating the velocity is generally kept along the flight path so that no amount of propellant 

is wasted in generating the curvature of the trajectory. 

 

And therefore, we need an alternate, normal force to the velocity vector which will produce the 

rotation of the velocity vector and hence a curvilinear path.  
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In order to do this, let us create a simple schematic as shown below. So, we have an 

instantaneous image of a rocket, inclined with respect to a local X axis and has an angle 𝜃 with 

respect to the local 𝑌 axis then we have the velocity 𝑉𝑠 along with a unit vector 𝑢𝑠 along the 

actual direction of the vehicle and the velocity 𝑉𝑛 and the unit vector 𝑢𝑛 along the direction 

normal to the axis or the velocity vector.  

 

The gravity we assume is to be pointing towards the negative wide direction and just to keep 

the picture fairly general we introduce three additional forces. One the lift which is because of 

aerodynamics, 𝐹𝑐 it controls force for maintaining the trajectory and finally of the thrust which 

is pushing the vehicle along the flight path. Now, we can easily write down the equations in 

the Cartesian coordinates X and Y in a planer context.  

 

We can also write the equations in terms of the polar coordinates that is 𝑟 and θ, but in the 

present context as you will notice we realize that the trajectory based curvilinear coordinates 

are the most convenient set of variables that is 𝑠 and 𝑛 that we are going to use. This is a 

coordinate system which is attached to the center of gravity of the vehicle and it is a moving 

coordinate system which is translating as well as rotating which obviously means that now we 



need to look at our equations of motion in the context of such a coordinate system and arrive 

at the applicable relations.  
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So, let us first look at the expression for the velocity in the context of the curvilinear coordinate 

system 𝑠 and 𝑛. So, let us assume a two-dimensional system 𝑥 and 𝑦 and a curvilinear trajectory 

𝐴. Let us consider a point 𝑃 on the trajectory and other point 𝑃1 which is at a distance of Δ𝑠 

along the trajectory as 𝛥𝑠 is assumed to be very small infinitesimal quantity 𝑃 and 𝑃1 can be 

assumed to be close to each other. 

 

So, that a line joining 𝑃 and 𝑃1 will be equivalent to a local tangent at 𝑃 and that tangent if I 

divide that with Δt that is the time interval between the 𝑃 and 𝑃1 what we get is a local value 

of derivative of the trajectory segment 𝛥𝑠 or what we call the local velocity which is along the 

tangent. Mathematically, we can now write the velocity as limit of 
𝛥𝑠

𝛥𝑡
 as 𝛥𝑡 → 0 which is 

nothing, but 
𝑑𝑠

𝑑𝑡
 the derivative of s. 

 

And our velocity vector along the 𝑢𝑠 direction is the derivative �̇� × 𝑢𝑠. So, you realize that the 

statement of velocity is fairly simplified if we use the trajectory-based coordinate system 𝑢𝑠.  
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Next, let us look at the acceleration model for the same motion scenario. So, we now consider 

the same picture and derived the expression for acceleration as follows. So, again we have a 

same picture, but this time we assume that at point 𝑃 the local tangent direction is �⃗�. And at 𝑃1 

the local tangent direction is 𝑣1⃗⃗⃗⃗⃗. We assume that there is an infinitesimal difference between 

these two local directions that is going from point 𝑃 to 𝑃1 the velocity vector has rotated by a 

small angle.  

 

Now the only way this rotation can be achieved is to introduce a velocity component which is 

normal to �⃗� at 𝑃 so that at 𝑃1 the velocity vector will become 𝑣1⃗⃗⃗⃗⃗ and this can be done through 

a simple velocity triangle that is shown below. So, there are two velocity components Δ𝑣𝑥 and 

Δ𝑣𝑦 together they generate Δ𝑣⃗⃗ ⃗⃗ ⃗ which is the change in the velocity and if we take its ratio with 

Δt the time taken that becomes our acceleration vector at that particular point.  

 

The mathematical relations are as follows. So, we write acceleration as the derivative of �⃗⃗� 

vector which is the velocity. Now as velocity is a vector, we are talking about a vector 

derivative. So, vector we can write as the scalar part of the velocity �⃗⃗� and the unit vector and 

all of us are familiar with the chain rule of differentiation so that we can write the acceleration 

vector as two terms the (�̇�𝑢𝑠⃗⃗⃗⃗⃗ + 𝑉�̇�𝑢𝑛⃗⃗ ⃗⃗⃗) .  

 

Now as unit vector is changing its direction the rate of change of unit vector is now related to 

a rotational rate �̇� and the local velocity �⃗⃗�. So, this is a locally circular motion concept so that 



the normal velocity is normal to the tangent direction and �̇� represents that particular normal 

velocity and together with 𝑉�̇� we get normal acceleration.  

 

So, now we have two acceleration components 𝑎𝑠⃗⃗ ⃗⃗  which is �̇� that is along the velocity direction 

and we have another acceleration 𝑎𝑛⃗⃗ ⃗⃗⃗ which is normal to the velocity direction. So, we realize 

that in the context of the trajectory coordinates 𝑠 and 𝑛 the vehicle now has two accelerations, 

one along the trajectory and one normal to the trajectory.  
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Of course, as we have mentioned earlier, we will assume that the lift is 0 because the vehicle 

is flying with zero angle of attack and that we do not need an 𝐹𝑐 for rotating the velocity vector. 

So, we assume both these to be zero. And with that we write down now the equations of 

equilibrium. So, the first equation of equilibrium that is as acceleration along the trajectory 

direction is nothing, but 
𝑑𝑉

𝑑𝑡
 the scalar component of acceleration. 

 

And this is nothing, but the difference between the thrust and a component of gravity in the 

direction opposite to thrust that is �̃�𝑐𝑜𝑠𝜃. In addition to this, now we have a normal acceleration 

an which is 𝑉
𝑑𝜃

𝑑𝑡
 and this should be equal to the normal component of a gravity in the 𝑠 and 𝑛 

coordinate system that is �̃�𝑠𝑖𝑛𝜃. Here 𝑉 and 𝜃 are treated as trajectory parameters.  
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Now as we see from these two equations the velocity solution is now function of the thrust of 

course, but angle θ. So, it depends now on the angle θ. You can readily see that if I put 𝜃 = 0°, 

which corresponds to the motion along a radial line. The normal equilibrium disappears and 

we recover our basic rectilinear motion equation, but more importantly what we realize from 

the second equation that the solution for θ which is nothing. 

 

But the angle by which the velocity vector rotates as it moves along the trajectory is controlled 

by the gravitational term 𝑔𝑠𝑖𝑛𝜃 which means that gravity acceleration alone is now responsible 

for the turning of the vehicle. Of course, the 𝑉 is also an important parameter. Here, it is worth 

nothing that conceptually we now have a set of two coupled nonlinear differential equations 

for actually three unknowns the velocity, the mass or the 
𝑑𝑚

𝑑𝑡
 and the flight path angle 𝜃, but we 

have only two equations and three unknowns.  

 

So, from our basic understanding of solution of such equations we note that if I specify any 

one of these, I can solve for the other two which means now I have a requirement that I must 

specify either velocity or burn profile or flight path angle profile.  
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And this gives us an important insight into the solution itself that as much as that these 

equations can be solved either as a trajectory design problem where I specify your burn rate 

and solve for 𝑉 and 𝜃 or as a vehicle design problem where I specify a trajectory either in terms 

of 𝜃 or in terms of 𝑉 and solve explicitly for either 𝑚 or 
𝑑𝑚

𝑑𝑡
 which will enable such a flight 

path.  

 

However, it is worth noting that the problem is complex because we only have an initial point 

which is the launch point and terminal conditions which we are going to talk about later which 

can be met from many different profile geometries. So, obviously there are multiple solutions 

possible which means depending upon how I specify my 𝑚 or �̇�. I am going to get various 

combinations of 𝑉 and 𝜃 which will be valid trajectories. 

 

And similarly for multiple values of 𝜃 or 𝑉 I will be able to solve for a large number of burn 

rates or 𝑚 which will be solutions. Further, we also note that these equations are time varying 

and nonlinear. So, most of our solutions are going to be numerical in nature as close form 

analytical solutions are not going to be feasible in a general case.  
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However, as we have been mentioning from the beginning in the early design stage particularly 

when we are looking at vehicle sizing. Closed form analytical solutions are found to be very 

useful and we also note that in case we can get such closed form solutions we can get a quick 

assessment of a large number of concepts and can carry out a trade of study to choose a few of 

the better performing concepts for more detailed investigations.  

 

Of course, you should realize that such things are going to be possible only under simplifying 

assumptions that limit their applicability. So, that is the flip side of simplified solutions. They 

provide quick assessment, but then there is a certain amount of approximation or constraint 

that we include for arriving at such solutions.  
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So, what are those kinds of solutions that one can think of? There are many possibilities that 

one can think of which could generate closed form solutions, but among such possibilities there 

are three in which are simple elegant and also have practical utility. In this regard, it is worth 

nothing that most launch vehicles will use some kind of control mechanism during its ascent 

mission. 

 

And therefore, it is possible to assume that we would have a control to either maintain one of 

the three variables that is either 
𝑑𝜃

𝑑𝑡
 or 

𝑇

𝑚
 or 𝑉. We will find that by keeping one of these as 

constants it is possible for us to arrive at closed form solution which have lot of practical utility.  
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While we will look at these in more detail in the next lecture. It is worth noting here that 

constant 
𝑑𝜃

𝑑𝑡
 generally helps us to manage the mission time better, we will see how it happens. 

Similarly, when we specify constant 
𝑇

𝑚
 that helps us to manage the structural mass better. As 

𝑇

𝑚
 

represents an indicator of the forward acceleration that the vehicle is undergoing and lastly the 

constant velocity case commonly helps us to manage the overall propellant mass better. 
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So, to summarize the gravity-based rotation of the velocity vector is a convenient way of 

achieving the desired trajectory profile by minimizing the propellant. Further, we have also 

established that simplified scenarios can help in arriving at closed form solutions that aid in 

quick performance assessment. So, in this lecture segment we have seen the basic idea of a 

trajectory which is curvilinear in nature and is driven only be the gravitational force so that we 

can manage our propellant better.  

 

And we have also seen that use of curvilinear coordinate systems 𝑠 and 𝑛 helps in writing down 

the equations in a fairly compact and simplified manner. We have also noted that using 

simplifying assumptions we can obtain closed form solutions for couple of cases which will 

help us to generate the trajectories quickly and with practical value. We will do this in our next 

lecture. So, bye see you in the next lecture and thank you. 


