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Hello and welcome to lecture number 36, of this lecture series on Turbo-machinery 

Aerodynamics. In the last class we had introduced a very new topic, which is quite 

different from what we have discussed in some sense. That is, on radial flow turbines. Of 

course, we have already discussed its counterpart centrifugal compressor. But, in the 

context of turbines, radial flow turbines operate in a quite different manner as compared 

to the axial flow turbines. 

So, last lecture was exclusively devoted towards understanding of radial flow turbines, 

the basic working of radial flow turbines and the thermodynamics of radial flow turbines. 

That is, as the flow passes through radial flow turbine, what in a Thermodynamics sense 

happens to the flow, as it passes through the different components of the turbine? We 

have discussed different types of radial flow turbines, which are possible. The two broad 

classes are the outward flow radial turbines and the inward flow radial turbines. We have 

seen that though the development, the original development of radial flow turbines was 

in the outflow mode, very soon it was realized that the inflow mode or the inflow radial 

flow turbine is a much more efficient way of managing the flow, and achieving work 

output than the outflow type of turbine. 

So, majority of the turbines, which are being used currently are inward flow radial 

turbines. The radial turbines as a concept, was originally developed towards meeting the 

hydraulic power requirement, that is, to convert hydraulic power into work output. And 

then, that continued for a very long time. In fact, it even continues till date. And, the 

hydroelectric power plants that we are aware of use one or more types of radial flow 

turbines. Of course, some of them also have axial flow types, but apparently radial flow 

turbines are very commonly used. And, the use of radial flow turbines for gas turbines 



was much later; that it was also being considered as one of the options for use in gas 

turbine engine. 

And, the modern day gas turbine technology has restricted the use of radial flow 

turbines. It is primarily used in the smaller engines, smaller thrust class engines. And, it 

is the main disadvantage, when it comes to use of radial flow turbines; for gas turbine 

applications, is the fact that in order to achieve very high efficiencies and power output, 

the turbine performance is a strong function of the inlet temperature. And in axial 

turbines, we have already discussed that modern day gas turbines use different cooling 

technologies, which can be used to, which can actually permit us to use 

turbine…temperatures, which are much higher than their material limits. 

This is not. It is still possible in radial flow turbines, but it is it is much more complicated 

to introduce and use some sort of cooling mechanisms in radial flow turbines. There are 

complicated methods, which are being proposed and probably being used in some types 

of engines. And, this is one major disadvantage. While radial turbines are not really used 

in gas turbine technology, in gas turbine engines, for larger thrust class engines because 

the turbine inlet temperature is sort of restricted. 

We saw that there are two different types of inward flow turbines: the cantilever type and 

the 90 degree inward flow turbines. And, we discussed in the previous class. We devoted 

most of the time towards discussion on the 90 degree inward flow turbine because that is 

more commonly used. 

The cantilever type turbine is very similar to the impulse turbine that we have already 

discussed in the axial turbine context. And therefore, there are certain disadvantages 

associated with impulse turbine as we have already seen. And, so the inward flow, 90 

degree inward flow turbine is like reaction turbine. And, in geometrical terms, a 90 

degree inward flow turbine looks exactly similar to a centrifugal compressor. And, but of 

course, just at the direction of flow and the rotation of the impeller or the rotor is exactly 

opposite in each cases. 

We also discussed about the governing equations, which are used when we analyze the 

flow in these different components. Starting from the outlet flow, the volute or the scroll, 

and then the nozzle blades, and then it goes into the rotor or impeller. And then, there is 

the exducer, which forms the later part of the impeller. Its counterpart and centrifugal 



compressors was the inducer. And then, in typical turbine, we may also have a diffuser, 

downstream of the rotor to recover part of the kinetic energy, which would otherwise be 

lost. 

And, I think, we also discussed two other aspects of radial flow turbines. They are the 

efficiency and performance parameters. We defined different forms of efficiency, the 

total-to-static efficiency and how it is related to total efficiency and the work output and 

so on. We also discussed or spent quite some time discussing about the different loss 

parameters, which are used in radial turbines, like the nozzle flow coefficient on the rotor 

flow coefficient. We also look at the incidence losses, which is the flow entering the 

rotor, need not necessarily be at the 0 incidence. Under off-design conditions, the 

incidence angles could be quite high, which leads to a substantial increase in the losses; 

that is, an additional component of loss that comes into picture when a turbine is 

operating in an off-design condition. 

So, these are the different loss mechanisms that we discussed in a little bit detail. We, 

then of course, spent lot of time discussing them because I think, it is fairly out of the 

scope of this course to discuss the loss mechanisms and design optimization techniques 

in detail; that it is a vast subject on it is own. So, I decided not to spend too much time on 

that. We will discuss some aspects of design and performance in the next class. 

But, today’s class I thought it is a good idea to have a tutorial session. We shall be 

discussing a few problems, which I will solve for you here. And then, I also have a 

couple of exercise problems, which I think, you should be able to solve based on what 

we had discussed today as well as in the previous class. 

So, today’s lecture is going to be a tutorial session. So, let us take a look at the first 

tutorial problem that we have. Let us take a look at what the problem statement is.  
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So, the problem number 1 that we have for today is the following. The rotor of an inward 

flow radial turbine, which is designed to operate at the normal condition is 23.76 

centimeters in diameter and rotates at 38,140 revolutions per minute. At the design point, 

the absolute flow angle at the rotor entry is 72 degrees. The rotor mean exit diameter is 

one half of the rotor diameter and the relative velocity at the rotor exit is twice the 

relative velocity at the rotor inlet. Determine the specific work done. 

So, in this particular problem, it is basically a very simple problem that, of course the 

first problem that I normally solve is a very simple problem. We have some dimensions 

of the rotor; we have rotor diameter and we have the rotational speed and the nozzle inlet 

angle. We also have been given that the rotor mean diameter is one half of the rotor exit 

diameter and the relative velocity at rotor exit is twice the relative velocity at the rotor 

inlet. So, based on this data that we have, we need to find the specific work done. 

So, I would say this is a very simple problem but, again as I keep emphasizing every 

time I have a tutorial session is that, we start solving a problem with the velocity 

triangles. So, let us construct the velocity triangles in this particular case. And then, we 

shall see and proceed towards solving this problem because velocity triangle will help us 

to understand, what the known parameters are and what are those parameters, which we 

need to estimate and calculate? 

So, for a 90 degree IFR turbine, we have the velocity triangles as shown. 
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 Here, we had already discussed this in the last class. Let me, again quickly explain the 

construction of a 90 degree IFR turbine. 

We have volute or a scroll, which sort of acts like (( )) chamber, through which the flow 

enters stagnation chamber here, where the flow is stagnant and then that gets accelerated 

through the nozzle blades. So, these are the nozzle blades. 

Nozzle exit station is denoted by station two. The flow then passes through the rotor 

blades or the impeller and exits at station three before going into the diffuser, which is 

the exit of the diffuser denoted by station four. You can see that, as I mention that is very 

similar to centrifugal turbine, a centrifugal compressor. In that case, of course, the 

velocity, the flow direction is the other way round. It is reverse the flow, actually 

proceeds in this direction. And, instead of nozzle blades, we have diffuser vanes. And 

therefore, this aerofoil orientation will also be the reverse. Let us look at the velocity 

triangles for this case. We normally have V 2 which is entering the rotor radically. So, 

the nozzle flow leaves relative velocity; entering nozzle is in the 90 degrees and C 2 is at 

an angle of alpha 2. In this case, it is given as 72 degrees. So, alpha 2 in this particular 

case is 72 degrees. U 2 is the blade speed at the station, that is, station two. 

Now, as the flow leaves the rotor, the absolute velocity leaving the rotor is axial. Under 

design condition, relative velocity that an angle of beta 3 with the acceleration, that is, B 

3 and U 3 is the rotor speed at station three. So, this is typical inward flow radial turbine 



and the corresponding velocity triangles at the rotor inlet and rotor exit. So, based on the 

data that we have, for this case we basically have the rotational speed, we have the exit 

diameters. So, I think we should able to find out U 2 and then subsequently, we also have 

been given some ratio of the blade speed at the rotor exit to the mean diameter and the 

relative velocity at rotor inlet and exit. So, with this data, we should be able to find the 

specific work done. 

Now, let me recall what we had discussed in the last class, when we had derived a very 

general expression for a 90 degree IFR turbine, where the specific work was, if you 

recall a function of three distinct parameters. One is a difference between the blade speed 

at the inlet and outlet is U 2 square minus U 3 square. The second term was a function of 

the relative velocity and third term function of the absolute velocities. So, we are going 

to do exactly the same thing here to calculate the specific work done. Let us calculate 

these three individual components, and then add up all of these and that gives us the 

specific work done. So, specific work done was 1 by 2 into three different terms, U 2 

squares minus U 3 square plus W 2 square V 2 square minus V 3 square. And, the third 

term was the absolute velocity. So, let get these individual terms first, add them up and 

then we get the specific work done. 
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So, blade speed at the tip is U 2, which is basically pi D into N divided by 60. And, so n 

has been given as 38,140 revolutions per minute, the diameter is given as 23.76 



centimeters. So, it is 0. 2376. This divided by 60. So, here U 2 comes out, may be if you 

substitute these values, we get U 2 as 474.50 meters per second. 

Now, this is where the velocity triangles come into picture that, if we need to calculate V 

2, if you have the velocity triangles in front of us it is very straight forward, it is ratio 

between V 2 and U 2 is related by tan alpha 2 or cotangent alpha 2 or cot alpha 2. So, let 

us look at the velocity triangle V 2 and U 2. So, tan alpha 2 is U 2 by V 2 and therefore, 

V 2 is U 2 into cot alpha 2. Alpha 2 is given as 7 2 degrees and therefore, V 2 the relative 

velocity at rotor inlet is 154.17 meters per second. Similarly, C 2 is U 2 sin alpha 2. C 2 

is this, and this. So, sin alpha 2 is U 2 by C 2 and therefore, C 2 is U 2 sin alpha 2. And, 

since alpha 2 is 70 degrees, we get C 2 as 498.90 meters per second. 

Now, C 3 square, that is, the absolute velocity at the exit, C 3 square is V 3 square minus 

U 3 square. V 3 is given as twice of V 2, and, that is, 2 into 154.1 7 square. And, U 3 is 

related to U 2 because the diameter at U 3, station U 3 is half that of U 2. Therefore, U 3 

is 0.5 times U 2. So, 2 into V 2 and 0.5 times U 2. 

So, what we get is that the square of this. We basically get C 3 square. C 3 square is 38, 

786 meters squared per second squared. 

Similarly, let us find out the three individual components, U 2 square minus U 3 square. 

This is U 2 square into 1 minus 1 by 4; this is 1 by 2 square. And, so it is 1 by 4. This 

should be 1, 68, 863 meter squared per second squared. The second term is V 3 square 

minus V 2 square, that is, 3 into V 2 square because V 3 is twice of V 2. So, this is 71, 

305 meter squared per second squared. The third term is C 2 square minus C 3 square. 

We already know C 2 and we know C 3 square. So, that difference is 2, 10, 115 meter 

squared per second squared. 

So, these are the three individual components, which contribute towards the specific 

work done. So, the next specific work done would be 1 by 2 times the sum of these three 

components. So, we add up all the three, divide that by two we get the specific work 

done. 

Now, this is one way, while probably the direct way of calculating specific work done. 

we can also approximate specific work done without having to undergo any of this, but 

of course, this is an approximate estimate of the specific work done, that is, simply equal 



to the square of the blade speed at the exit. So, delta W is U 2 square and why is it U 2 

square? 

That is because flow enters the rotor and leaves the rotor in the axial direction. So, C w 3 

is 0, C w 2 will basically be equal to U 2, specific work done is U 2 C w 2 minus U 3 C 

w 3. The second term would become 0; the first term is equal to U 2 square. So, delta C 

w should also be equal to simply U 2 square. So, if we do that if we calculate work done 

in both ways, let us see what happens. 
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So, if we add up all the three different terms and divide by 2, we get the specific work 

done as 225, 142 meter squared per second squared. And, what we see is that, the 

fractional contribution of each of these three terms. The first term which is U square is 

.375. V square is .158 and C square is .467, that is, you can see that there is a fair share 

for all these three components in the specific work done. 

So, we can calculate specific work done also by the second method, which is basically 

because in this particular case, beta 2 is 0 and alpha 3 is also 0. In which case, delta W 

simply becomes U 2 square. So, if you simply square 474.5 whole squares, you get 2 

25,150 meter squared per second squared. You can see that, they are very close. Specific 

work done calculated in either of these ways, should give you the correct answer. Both 

these methods give you identical specific work done. So, one way is to calculate the 

individual components and add up all of them, which is a more general method because 



irrespective of how the velocity triangles are, you could, that is, still valid; whereas delta 

W is equal to U 2 square is valid, only if in this case. Like in this case, the incidence is 0, 

the deviation also 0, in which case you can directly calculate delta W. And, one would 

get the same delta W expecting the round of errors, which is seen in the both this 

calculation. 

So, this first problem as you can, already as we have seen is a very simple problem, 

which involves simple application of mine to solving the velocity triangle to calculate the 

different components or constituents of the specific work done. One is blade speed; the 

other is relative velocity and the absolute velocity. We add up all three, divide them by 2; 

we should get the specific work done. 

So, let us now, move on to the next problem that I have for you. And, it is a slightly more 

involved problem, but of course, again I normally keep these problems limited to very 

fundamental aspects of the particular aspect that we have designed working on. In this 

case it is the radial turbines. So, we are just looking at very fundamentally 

thermodynamics of radial turbine and how we can apply some of these principles to 

calculate some parameters associated with radial flow turbines. 

Let us take a look at the second question we have for today. 
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Problem statement number 2 is: a radial inflow turbine develops 60 kilowatts power 

when running at 60,000 revolutions per minute. The pressure ratio P 0 1 by P 3 of the 

turbine is 2.0. The inlet total temperature is 1,200 Kelvin. The rotor has an inlet tip 

diameter of 12 centimeters and an exit tip diameter of 7.5 centimeters. The hub to tip 

ratio at the exit is 0. 3. The mass flow rate is 0.35 kilograms per second. The nozzle 

angle is 70 degrees and the rotor exit blade angle is 40 degrees. If the nozzle loss 

coefficient is 0.07, determine the total-to-static efficiency of the turbine and the rotor loss 

coefficient. 

So, here we can see, of course that the problem involves lot more data than we had for 

first case. We had the power input or power developed by the turbine is 16 kilowatts, the 

rotational speed is 60000 revolutions per minute. The pressure ratio is 2. Turbine inlet 

temperature is 1200. The dimensions of the rotor the tip diameter is 12 centimeter, exit 

tip diameter of 7.5 centimeter. Hub to tip ratio is 0.3. Mass flow rate and the angles, and 

additionally, the fact that the nozzle has a loss coefficient of 0.07. 

We need to find total-to-static efficiency and the rotor loss coefficient. So, this is the 

problem statement for this second question that we have. As always, we will first start 

with the velocity triangle. It is exactly the same, as we have seen in the first problem. 

Nevertheless, let us just quickly look at the velocity triangles and understand, what are 

the data provided for using this question and what is that we need to find. 
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So, in this case, the velocity triangle again is the same as we have seen in the previous 

question. This angle is given to us as 70 degrees and the exit blade angle beta 3 is given 

as 40 degrees. We have the dimensions at station two and station three and hub to tip 

diameter ratio is also given to us. We have the power output and the rotational speed. So, 

quite a bit of data is given to us. Rotational speed is given; means U 2 minus U 3 already 

known, since angles are specified the other components can also be calculated. 

So, let us start calculating some of these parameters. The rotor tip rotational speed is we 

can calculate from pi D N by 60, which is 377 meters per second. And here, D 2 is given 

in this question. It is given as 12 centimeters; rotational speed is 60,000 revolutions per 

minute. So, if we substitute pi and the rotational speed and the diameter, is divided that 

by 60, we get 377 meters per second. 

Now, from the velocity triangle we know that, at the rotor inlet beta 2 is 0. And 

therefore, sin alpha 2 is simply U 2 by C 2, where C 2 is U 2 into cosecant alpha 2. 

Alpha 2 is given as 70 degrees. And, U 2 we have already calculated as 377 meters per 

second. And therefore, C 2 is equal to 377 into cosecant 70 degrees, that is, 401.185 

meters per second. 

T 0 2 is given to us; turbine inlet temperature is 1200 kelvin. Since C 2 is now 

calculated, we can calculate T 2 static temperature, that is, T 0 2 minus C 2 square by 2 

C p. That should come out to be 1130 kelvin. 

So, this is the preamble of a question, that is, we solve some simple parameters, which 

anyways is required for solving the rest of the problem. So, first part of the question is to 

find the total- to- static efficiency. And, that is where, we will make use of the pressure 

ratio that we have been given to, we have given as 2 .0. 

From the pressure ratio, we should able to use that data to calculate the total-to-static 

efficiency. And, so that the next part of the question, we are going to solve is to find the 

stagnation temperature drop across the turbine. And, from the power output, we can 

actually find the isentropic or the actual power output, actual temperature drop across the 

turbine. We should take the ratio of the two; we get the total-to-static efficiency.  
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So, the stagnation temperature drop, which is given by T 0 1 minus T 3 s is equal T 0 1 

into 1 minus T 3 s by T 0 1. We can convert this ratio into the pressure ratio because this 

ratio has been given as 1 by 2, that is, 0.5. T 0 1 is known to us. And therefore, this 

temperature drop is required for calculating the total-to-static efficiency because total-to- 

static efficiency is T 0 1 minus T 0 3, divided by T 0 1 minus T 3 s. 

So, T 0 1 is 1200. This multiplied by 1 minus 0. 5, rise to gamma minus 1 by gamma. 

You can calculate this. And, this should come out to be 190.92 Kelvin. Turbine power 

output, as we know is m dot C p into T 0 1 minus T 0 3. Power output is given as 60 kilo 

watts; mass flow rate is 0.35 kilograms per second. C p, we are assuming for gasses as 

1.148. Therefore, T 0 1 minus T 0 3 is 149.33 kelvin. So, if we simply take of ratio, this 

total-to-static efficiency is 149.33 kelvin divided by 190. 92. And, that is 0.782. So, total-

to- static efficiency in this case is 0.782. 

So, that solves the first part of the question where we are required to calculate the total-

to-static efficiency. Now, the next part of the question involves or requires us to calculate 

the rotor loss coefficient. We have been given the nozzle loss coefficient as 0. 07. And, 

so we will need to make use of that, rather complex formula that we had derived in the 

last class. If you remember it was a very long formula, which was relating the last 

coefficient to the radius ratio and the static temperature ratios. 



So, we will make use of that formula to calculate the nozzle, well the rotor loss 

coefficient and that formula involves both the nozzle coefficient, as well as rotor loss 

coefficient multiplied by the angles and so on. So, we know that in this case, the radius 

ratio because this will be required in that formula. Radius ratio r 3 by r 2 is basically the 

hub diameter at station plus the shroud diameter divided by 2, that is, the mean diameter 

divided by diameter station two. And, this we know the hub to tip ratio is given as 0.4. 

So, we substitute zeta here and that is basically 0.4 in this question. This is multiplied by 

the d 3 s plus d 3 s divided by 2 into d 2. So, if we substitute these diameters, which have 

been given, as well as the hub to tip ratio we can get the radius ratio as 0. 406. 
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Now for efficiency this was the long expression, I was mentioning total-to-static 

efficiency is 1 plus 1 by 2 into zeta n, the nozzle coefficient, T 3 by T 2 into cosecant 

square alpha 2 plus r 3 by r 2 square into zeta r, which is the rotor loss coefficient to 

cosecant square beta 3 plus cot square beta 3, this whole raise to minus one. 

Now, this, though it looks rather complex formulae, we have derived this expression 

right from the first principle. So, if we know, if we can actually relate the first principle 

formulae of total-to-static efficiency, which is T naught 1 minus T naught 3 by T naught 

1 minus T 3 s, the denominator get expressed in terms of the nozzle and the stator or the 

rotor loss coefficients. Numerator is expressed in terms of static temperature ratios and 

so on. 



So, from that, we can actually derive this without much difficulty. The numerator 

actually becomes C p times U into C p times C w delta C w. And then, delta C w we 

express in terms of the angles and so on. So, it is a very simple two to three step 

derivation from which we can derive this long, rather longest expression, which we see 

here for total-to-static efficiency. 

Now, in this expression, we still have an unknown that is T 3 by T 2. T 2 we have 

already calculated, but we do not know the value of T 3, which also can be. In fact 

calculate, provided we know the exit stagnation temperature and the exit absolute 

velocity. So, if that is known, we can actually, we should be able to calculate because in 

this case, beta 3 is given and from the velocity triangle, since beta 3 is given, we can. 

And, U 3 is known, we can calculate C 3. What about T naught 3? 

For T naught 3, the power output is given, inlet stagnation temperature is given. So, we 

can calculate T naught 3 from there. T naught 3 minus C 3 square by 2 C p will give us T 

3. And then, we can take ratio T 3 by T 2. That would be deriving the whole thing from 

the first principle or the whole thing can be expressed in a single definition term, which 

also I think I had mentioned in the last class. Which is basically, in terms of some of 

these parameters, which we know and T 3 by T 2 is actually defined terms of the 

velocities and loss coefficients. 1 minus U 2 square by 2 C p, T 2 into 1 plus r 3 by r 2 

whole square multiplied by 1 plus zeta r cosecant square beta 3 minus 1 into cot square 

alpha 2. 

And, so if you substitute for these values here, the only unknown is zeta r. So, we should 

get 0.9396 minus 0.02187 zeta r. So, this, if you substitute in this expression where zeta 

n is also known, you get a quadratic equation and you can solve that zeta r, which is the 

rotor loss coefficient can be calculated as 0.62. 

So, this is one way of calculating zeta r. The other way, of course is to calculate T 3 by T 

2 using what I had mentioned. T 2, we have already calculated. We know what the value 

of T 2 is. For calculating T 3, it involves two to three steps. One is to calculate the 

stagnation temperature at exit T naught 3, which can be calculated from the power 

expression. Power is equal to mass flow rate into C p into delta T. T naught 1 minus T 

naught 3. So, all the three parameters are there. All the parameters are known except T 0 

3 we can calculate stagnation temperature. Then, to calculate T 3, we also need to know 



the velocity at the exit, that is, C 3. And, to calculate velocity at the exit C 3, we know 

beta 3, we also know U 3. And, how do we know U 3? Because rotational speed is given 

to us and the diameter at the hub or at the exit of the rotor is also known. 

So, from that we can calculate U 3. Since U 3 is known, beta 3 is known and we can 

calculate C 3 that is basically, U 3 cot alpha 3 should be equal to C3. So, once C 3 is also 

known, the static temperature as at the exit T 3 is equal to stagnation temperature T 0 3 

minus C 3 square by 2 C p. And, so that, it is a rather easier way rather than this longest 

formula, I just shown. 

And then, substitute for that in the expression and we should able to calculate zeta r, 

which is the rotor loss coefficient. Nozzle loss coefficient is already known to us. It is 

0.07. So, what you can see is that the loss coefficient for the nozzle. This case has been 

given as 0.07. And, for the rotor it is 0.62. And, so I think, I have also given some range 

of these values in the last class. I had mentioned typically, the rotor loss coefficient are 

on the higher side because of the fact that there are rotational effects come into picture 

losses, associated with the rotor are much more than the rotor losses associated with the 

stationary component like a nozzle; especially when the flow is accelerating. So, in this 

case the rotor loss coefficient is, in fact close to one order magnitude higher than the 

nozzle loss coefficient. 

So, this solves our second problem, which required us to calculate the total-to-static 

efficiency as well as the rotor loss coefficient. So, you can clearly see that this is slightly 

more involved question. In this, of course I have taken the easier route of directly 

substituting this in the formulae. What I would strongly urge you to do and probably 

leave that as an exercise for you to derive these equations from the first principles and 

not simply use the direct longest formulae. It is very easy to derive the equations from 

the first principles. In the total-to-static efficiency definition term, it is basically T 0 1 

minus T 0 3 divided by T 0 1 minus T 3 s. Or, let us express that in terms of enthalpy, h 

0 1 minus h 0 3 divided by h 0 1 minus h 3 s. The denominator gets expressed in two 

separate forms. One is to do with nozzle loss coefficient; second is the rotor loss 

coefficient. Numerator gets expressed in terms of mass flow rate C p and delta T and so 

on. So, from this, you can actually say denominator has a nozzle and rotor loss 

coefficient term. Numerator is already known to us. 



So, this can be simplified and you can actually calculate the rotor loss coefficient, given 

the nozzle loss coefficient in a much simpler, less confusing manner than simply 

substituting them in the formulae. I picked up this method because if we take up any 

textbook, you would normally see this kind of method where they would refer to the 

derivation, which was discussed earlier on what I have done. And, in the problem we just 

simply substitute, plug in the values and calculate the corresponding efficiency and other 

terms required. 

Now, that brings us to the third question. Let us, now proceed towards the third problem 

that we have for us to solve. And then, we will see how this problem is different from the 

previous problems. 
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An inward flow turbine with 12 vanes is required to develop 230 Kilowatts at an inlet 

stagnation temperature of 1,050 kelvin and a flow rate of 1 kilogram per second. Using 

the optimum efficiency design method and assuming a total-to-static efficiency of 0.81, 

determine the absolute and relative flow angles at the rotor inlet; part b is the overall 

pressure ratio, P 0 1 by P 3; part c is the rotor tip speed and the inlet absolute Mach 

number. 

So, this is a three part question where we are required to calculate three different part 

aspects. One is the angles, absolute and relative flow angles and the pressure ratio, and of 

course, the rotors tip speed and the Mach number. And of course, you can see what is 



mentioned here is that we can assume optimum efficiency design method. I mentioned 

some preliminary aspects of this in the last class. I would urge you to take up slightly 

more detail reading of this in any of the text books that we have mentioned. You can take 

up, pickup any book on the turbo machines and we will find a small section and optimum 

efficiency design in methodology, wherein a few formulae would basically be derived 

again from the first principles. And, you can see what it is basically trying to tell us. 

So, in this question, it is question which involves optimum efficiency design 

methodology, which can be assumed. And then, we can, we are required to calculate the 

angles, the Mach number and so on. So, the first part of the question is to find the flow 

angles; the relative and absolute flow angles. 

For optimum design, it is known that the absolute angle at the nozzle exit, that is, alpha 2 

is simply related to the number of blades. And, this comes from what is known as the 

Whitfield’s formula, which basically equates or which basically relates the alpha 2 to the 

number of blades. So, cos square alpha 2 is equal to 1 by N; so, that is, where n is the 

number of vanes. 
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So, for optimum design, it actually has been shown by Whitfield that, cos square alpha 2 

is 1 by n. So, that is, where n is the number of vanes. So, in this equation we have 12 

vanes and since we have been told to assume optimum design, we can simply substitute 

the number of vanes here and calculate alpha 2. So, alpha 2 would be 73.22 degrees. 



Also, another consequence of the Whitfield’s equation is that, we have beta 2 is equal to 

2 into 90 minus alpha 2. Beta 2 is the blade angle at the inlet of the rotor. And, that is 

equal to 2 into 90 minus alpha 2. And, so this comes to be 33.56 degrees. 

(Refer Slide Time: 39:26) 

 

So, the next part of the question is to find the pressure ratio, well, basically the total-to-

static efficiency. And, for which, of course we will use the total-to-static efficiency 

basically is T 0 1, 1 minus T 0 3 by 3, T 0 1 minus T 3 or T 3 s. And, from there we can 

express the denominator in terms, P 3 by P 0 1. And, in this question, we know that the 

power developed is given as 230 kelvin, inlet stagnation temperature is given, mass flow 

rate is given and the total-to-static efficiency is given. So, we need to find the pressure 

ratio in this case. So, all we have do is, we just substitute the power output here, which is 

m dot into C p into delta T. C p is known, assumed and the stagnation temperature is also 

can be calculated or it is given at the inlet. 

Since the efficiency is known, we can calculate the pressure ratio, P 3 by P 0 1 as 

0.32165. The inverse of this is the turbine pressure ratio, which is P 0 1 by P 3 and that is 

3.109. So, this basically comes from the efficiency definition eta T s is T 0 1 minus T 0, 

T 0 3 divided by T 0 1 minus T 3 s. The denominator gets expressed in terms of the 

pressure ratio, from the isentropic relation numerated is simply C p times delta T. And 

therefore, that is the power output of the turbine. 



Now, the third part of the question is to find the Mach number and then, we should also 

need to find the blade speed at the tip of the rotor. So, we will first find the absolute 

Mach number at the inlet, for which we will find first the Mach number corresponding to 

stagnation conditions. 
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So, M 0 2, this again is coming from the very basic definition for delta M 0 2 square is 

equal to delta W by gamma minus 1 into 2 cos beta 2 by 1 plus cos beta 2. Now, where 

does this equation come from? Again I will urge you to try to derive this equation from 

the fundamentals. Delta W is h 0 1 minus h 0 3, which is m dot C p into T 0 1 minus T 0 

3. And, there the temperatures can actually be expressed in terms of the corresponding 

velocities. And therefore, we can express the Mach number in terms of the, well, part of 

the temperature get expressed in terms of Mach number, wherein this flow angles alpha 2 

and beta 2 will also come into picture. 

So, from those fundamental equation we can actually derive the stagnation Mach 

number, which is M 0 2 Mach number at the inlet of the rotor, M 0 2 square is delta W 

by gamma minus 1 into 2 cos beta 2 by 1 plus cos beta 2. So, all the parameters on the 

right hand side are known to us. We just, substitute these different values and we get M 0 

2 is 0.7389.  

The absolute Mach number which is basically based on this static conditions, M 2 is 

related to M 0 2 as we know. So, M 2 square is M 0 2 square by 1 plus gamma minus 1 



by 2 M 0 2 square. This again follows from the isentropic relations. We have already 

seen that, it is the relation between stagnation temperatures to static temperature, 

stagnation pressure to static pressure and so on. We can also relate the corresponding 

Mach numbers in this way. 

So, since we have calculated M 0 2, we substitute that here and then, we get the static (( 

)) Mach number based on static conditions that the absolute Mach number as 0.775. So, 

this is again, this can be calculated in multiple ways. The other way, which I suggest you 

can try to calculate would be to take the ratio of T, absolute velocity; that is, C 2 divided 

by square root of gamma or T 2. Stagnation temperature is known at the inlet and to find 

static temperature, we need T naught minus C squared by 2 C p. So, is basically we need 

to calculate C square at the inlet. And, to calculate C square we will of course, need the 

blade speed because you need to calculate because blade angle is known. And so, if you 

know the blade speed at tip, that is U 2, you can solve C 2, and then, therefore, calculate 

Mach number. 

In this case, of course we are doing at other way round. We are calculating the Mach 

number first and then, we are now going to calculate the blade speed at the tip. But, it 

can also be done the other way round. 

So, let us now calculate the blade speed at the exit of the nozzle or, that is the entry rotor, 

entry tip of the rotor. Delta W by C p T 0 1 as we know is equal to gamma minus 1 into 

coos beta 2 into U 2 square by a 0 1 square. 

So, here a 0 1 is speed of sound based on stagnation temperature, square root of gamma r 

T 0 1. This can be calculated as 633.8 meters per second. Assuming, T 0 1 is equal to T 0 

2. Since in this case, we know the power output as stagnation temperature and beta 2, we 

can simply substitute for these values and then, calculate the blade speed at the tip U 2. 

And, that comes out as 538.1 meters per second. So, the other approach to calculate 

Mach number would be to actually calculate the blade speed first and then, since blade 

speed is known and alpha 2 is known, you can calculate C 2. And, from C 2 you can 

calculate the static temperature T 2. T 0 2 minus C 2 square by 2 C P. And therefore, 

Mach number would be C 2 by square root of gamma or T 2. So, this is the other way of 

calculating the Mach number. We have calculated that in the slightly different way. 



So, that completes the third problem that we had set aside for today’s tutorial. So, I have 

one more problem to solve, which is a very simple problem, basically not involving in 

the calculation. But, this is just to compare performance or operation of two different 

types of turbines that we have discussed about. One is the axial turbine, which we had 

rather detailed discussion, several lectures earlier on and of course, the radial turbine. So, 

let us compare under certain given operating conditions, how the work output of these 

two different turbines can be calculated and how do they compare with each other. 
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So, the fourth problem statement is the following: Compare the specific power output of 

axial and radial turbines in the following cases. Axial turbine, in this case is given as 

alpha 2 is equal to beta 3 is 60 degrees and alpha 3 is equal to beta 2 is 0 degrees. 

For the radial turbine, alpha 2 is given as 60 degrees and beta 3, alpha 3, beta 2; all of 

them are 0. If the rotational speed is the same in both this cases, we are required to 

calculate this specific power output. So, what we can see is that immediately for the axial 

turbine, we have, we can see that alpha is equal to beta 3 and alpha 3 is equal to beta 2. 

Immediately, tells us that this is a 50 percent reaction turbine, which means that the 

velocity triangles would be symmetrical. And, for the radial turbine we have already seen 

the velocity triangle, which is for the nominal operation condition, where alpha 2 is 

given, beta 2 is 0, alpha 3 and beta 3 are respectively 0 at the exit. 
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Let us take a look at the velocity triangles first. And, so here, we have the velocity 

triangle for both these cases, the axial as well as radial turbine. Let us look at the axial 

turbine first. Velocity triangle at the inlet is given by this. Alpha 2 is given as 60 degrees. 

And, so alpha 2 at 60 degrees and that is equal to beta 3, that is, also 60 degrees and beta 

2 is 0, as you can see and alpha 2 is 0, that is, C 3 makes 0 degrees with the axial 

direction. 

And, since it is an axial turbine, we will assume U 2 is equal to U 3 is equal to U, blade 

speed. It is for the same circumferential radial location. So, U 3 and U 2 are the same and 

that is equal to U. 

And, these are the corresponding velocities, C 2. At the inlet, the absolute velocity V 2 is 

related and at the rotor exit, we have C 3 and correspondingly V 3, which is the relative 

velocity. 

For the radial turbine, we have been given that alpha 2 is again 60 degrees and beta 3 is 

also 60 degrees. And, this is typical velocity triangle for an inward flow radial turbine. 

Since alpha 2 is 60 degrees, we have C 2, which is at 60 degrees to the radial location 

here. V 2 is the relative velocity which is entering in the radial direction. U 2 and U 3 

they are not the same. They are different in this case. and, the exit of the rotor we have 

beta 3, which is again 60 degrees and axial velocity which is C 3 and C a 3, they are the 

same. V 3 is the relative velocity at the exit of the rotor. 
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So, for the axial turbine, we have alpha 2 and beta 3 as 60 degrees; alpha 3 and beta 2 as 

0 degrees; specific work for this case, in this fifty percentage reaction case, would be U 

times delta C w; U times C w 2 and C w 3. Here as you can see, C w 3 would be equal to 

0 for the axial turbine because the flow is leaving in the axial direction. So, C w 3 is 0 

and C w 2 is equal to U 2. C w 2 is the tangential component of C 2, which is equal to U 

2. And therefore, the specific work done for the axial turbine would be simply U square. 

For the radial turbine, alpha 2 and beta 3 are 60 degrees; beta 2 and alpha 3 are equal to 

0. And, specific work done is U 2 C w 2 minus U 3 C w 3. In this case of course, C w 3 

is again 0, like in the case of axial turbine. And, C w 2 is at the inlet, is equal to U 2. 

And, of course at the exit U 2 and U 3 are not the same. But, since C w 3 is 0, the radial 

turbine also develops a work which is equal to U square. In this case it is, U 2 square. So, 

specific work done in this particular case one of them is for an axial turbine and other is 

for radial turbine. For given these conditions for the same rotational speed, both of these 

turbines generate the same work output. They both are functions of square of the blade 

speed. 

So, in this specific case that for example, that we have looked at because of the 

conditions that have been specified to us for the same blade angles and rotational speeds, 

both these turbines generate the same work output. So, just to give you an idea of how 

the work done can be calculated for different types of turbine configurations, of course, 



we have seen axial turbines in greater detail, including a tutorial session earlier on. And, 

this is for just to make a comparison between the work outputs of these two different 

types of turbine configurations. 

So, that completes the fourth problem, as well that we have solved today. And, what I 

have for you are two exercise problems, which I would leave it for you to solve. And, of 

course I had also left few exercises in between the couple of problems where I had 

requested that you should try to solve it in a different way. The method I had used to 

solve is one of the ways of solving the problems. You can also attempt to solve the 

problem in a different way, for which I had given some hints. So, I suggest that you 

would also solve those problems using the other alternative approach that I had 

suggested. 
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So, let us take a look at the first exercise problem that I have: a small inward radial flow 

gas turbine, comprising a ring of nozzle blades, radial-vaned rotor and an axial diffuser, 

operates at nominal design point with a total-to-total efficiency of 0.90. At the turbine 

entry the stagnation pressure and temperature of the gas is 400 kilopascals and 1140 

kelvin respectively. The flow leaving the turbine is diffused to a pressure of 100 

kilopascals and has negligible final velocity. Given that the flow is just choked at the 

nozzle exit, determine the impeller peripheral speed and the flow outlet angle from the 

nozzles. 



So, this question has an additional component, that is, diffuser and it is given that at the 

exit of the diffuser the flow has negligible velocity. So, we can assume that the flow exits 

the diffuser with almost 0 velocity, and the flow at the nozzle exit is just choked, which 

means that Mach number at nozzle exit is 1, velocity there would be equal to square root 

of gamma r T. And, stagnation temperature is given to us. And, so that should help you 

in finding out the parameters at the rotor entry. And, since rotor exit conditions are lot of 

fix. You can also calculate the conditions at the rotor exit using the fact that the diffusion 

pressure is given and the fact that velocity at the exit is close to 0. So, in this case the tip 

speed comes out 586 meters per second and the angle alpha 2 is 73.75 degrees. 
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Now, the second question exercise problem is: if the mass flow rate of gas through the 

turbine given in this problem 1, the previews problem is 3.1 kilogram per second, the 

ratio of rotor axial width to rotor tip radius is 0. 1 and the nozzle isentropic velocity ratio 

is 0.96. Assuming that the space between the nozzle exit and nozzle rotor entry is 

negligible and ignoring the effects of blade blockage, determine the static pressure and 

static temperature at the nozzle exit; the rotor tip diameter and rotational speed; the 

power transmitted assuming a mechanical efficiency of 93.5 percentage. 

So, we need to use part of data which is given in the first question, to be able to solve 

this question as well. So, answer to part 1 is the pressure static pressure is 205. 80 

kilopascal; temperature is 977 kelvin; the rotor tip diameter is 125.44 millimeters and 



rotational speed is 89,200 revolutions per minute, power transmitter with this mechanical 

efficiency would come out to be 1 megawatts. 

So, these are two exercise problems that I have for you. You can solve this based on 

what we have discussed in the last couple of lectures including today’s. And, I would 

also suggest that you solve couple of those problems, which we solved in today’s lecture 

that is problem number 2 and 3 in a different approach, from what we have solved in the 

tutorials. So, I would suggest that you also solve those problems using a slightly different 

approach. 

So, we would have just one more lecture on radial turbines, where we would discuss 

some aspects of performance and some preliminary design aspects related to radial flow 

turbines. 

So, these we will take up in the next class, which would be lecture number 37. 

 


