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We are talking about turbine aerodynamics, in the course, lecture series of 

turbomachinery aerodynamics, and we are now on to the area of turbine aerodynamics, 

in which we can now, look at certain three-dimensional aspects of flow through axial 

flow turbines. We have done some of the area that is related to the two-dimensional flow, 

which normally is also called a cascade flow, as we have done in case of axial flow 

compressors. In case of axial flow turbines, some of the features, as we have seen, are 

somewhat similar to the axial flow compressors, but there are many areas that are quite 

different from that of axial flow compressors. 

When we come to the three-dimensional flow, it is somewhat similar, that there are 

certain areas that have some overlap or similarity with axial flow compressors. On the 

other hand, there are quite a few areas and considerations that are different in case of 

axial flow turbines. So, today's lecture, we will be looking at three-dimensional flow in 

axial flow turbines. 

Now, in three-dimensional flow, the axial flow turbine behaves in a manner that is 

somewhat different from the two-dimensional theory, which you have done in somewhat 

great detail in the earlier lectures, in this lecture series. The three-dimensional flow, as 

the name suggests, that the flow has acquired a third dimension in its motion and this 

third dimension is the radial flow. Normally, we assume that the flow is two-

dimensional, which means, it has axial motion as well as tangential motion, which is 

imparted by the rotating blades. And hence, it is a 2-component flow, which is what was 

assumed in two-dimensional flow analysis. The moment we get into a three-dimensional 

flow, the third dimension, that is the radial component of the flow, becomes an important 

issue. 



So, many of the theories that have been developed earlier on, were developed with the 

assumption, that the flow is essentially two-dimensional nature. So, when the three-

dimensionality of the flow had to be factored in, the assumptions made were the three-

dimensionality could be factored in a pseudo-three-dimensional manner; that means, 

when the blades or the airfoils are indeed stacked from root to the tip of a blade, the root 

to the tip stacking is done with the help of firstly getting the two-dimensional airfoil 

sections at each section, at each radial section, and then stack them up one on top of 

another from the root to the tip. 

Now, this two-dimensional airfoil, fundamentally the airfoils are two-dimensional 

entities aerodynamic entities. So, when you stack them up in a three-dimensional 

manner, you get a 3D blade shape, which to begin with, under the assumption that it 

follows two-dimensional flow aerodynamics. However, the modern designs and the 

modern analysis have shown that some of the flows do acquire certain amount of three-

dimensionality; when the flow acquires three-dimensionality, the problem essentially is 

that, predicting the turbine performance through analysis, various kinds of computational 

analysis, becomes quite a lot difficult proposition in the sense, that the prediction may 

not match with the, you know, actual tests. 

On the other hand, when it was essentially two-dimensional flow, it was known that 

there would be some different between prediction and test results. However, prediction 

was much easier and much faster. So, many of the laws governing the turbine, you know, 

basic turbine analysis and indeed basic turbine design, were based on two-dimensional 

understanding; however, they quickly figured out a way to create a blade stacking 

methodology, by which three-dimensional turbine blades could be created. And hence, a 

certain three-dimensionality of the turbine blade design was brought into the picture or 

brought into the methodology. 

In today's lecture, we will be we talking about some of these methodologies, where 

three-dimensionality of the flow has been attempted to be built into the turbine design 

methodology. And, we will say, that in what respect, certain amount of three-

dimensionality of the flow could be avoided by design; you know, a large amount of 

three-dimensionality can be indeed avoided by design, and if it is a little bit is there, it 

would have to be found out through a numerical analysis, mostly simulation in terms of 

computational flow dynamics. 



So, most of the turbine design laws, indeed are essentially pseudo-three-dimensional, in 

the sense, they give you a method by which two-dimensional blades or airfoils could be 

stacked from a root to the tip or quite often from mid-section design, which is normally 

done first, and then stacking downwards to the root and upwards to the tip. 

So, in today's class we will be looking at some of these aspects which are essentially 

factoring in a certain amount of three-dimensionality of the flow and then, of course, 

telling us, how to create a three-dimensional axial flow turbine blades, for applications in 

modern gas turbines. So, some of the first assumptions that we would probably like to 

look at are related to the three-dimensionality.  
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One of the first assumptions that we would like to take a look at, is the fact that the radial 

component of the flow is prima facie, very small, in relation to the axial component and 

the whirl component C a and C w. We would like to keep it that way by design. So, the 

designers attempt to create blades which would promote flow over the blade surfaces and 

through the blades, which have very small radial component C r; if it is in a rotor, we 

may call it v r; however, the radial component would be rather small compared to the 

whirl component. 

Now, if you look at the picture just below, it shows that the flow coming into the turbine 

could have a situation where the flow actually acquires three-dimensionality because of 

the shape of the annular passage. The annular passage that goes through the turbine, 



depending on the turbine pressure drop a pressure ratio, would have to open up, and in 

the process of opening it up, it creates a divergence passage, as opposed to a converging 

passage in axial flow compressor. And then this diverging passage, you know, 

automatically promotes a certain amount of flow which is known axial; that means, it 

acquires a certain amount of three-dimensionality. 

For example, flow coming in here, into the turbine, is most likely to be actual in nature; 

let us say, in the first stage of the turbine. And then, as it goes to the first stage which 

promotes very high pressure ratio, it has to open up. So, it has a large area of flow which 

has to be given as the density has fallen, and then it goes through a meridianal path, 

which, let us say, has a radius of curvature of r m. So, this meridianal path through which 

it goes, then automatically brings in radial component of the flow. 

So, if you take the meridianal path of the flow at any point on the meridianal path, the 

flow would automatically would have an axial component; if it is passing through a rotor 

blade or edges parts of the rotor blade, it will have acquired a whirl component as shown 

here; and then, because of the nature of this meridianal path, it will acquire a certain 

amount of radial component. So, because of the geometry of the flow track, sometimes 

the flow acquires a radial component and that is inevitable because of the aero 

thermodynamics of the flow, as it is going through the axial flow turbine. 

What people would like to do, is to ensure that this radial component is as small as 

possible, as is given out in the first assumption; and to do that, one may probably invoke 

this simple radial equilibrium equation that we have done in case of axial flow 

compressors. 

So, this radial equilibrium equation, then simply equates the pressure, static pressure 

gradient along the radial direction with the centrifugal action that the flow is 

experiencing due to its whirl component or rotational component. And then, this balance 

of static forces on the left hand side and the dynamic forces on the right hand side, which 

is the centrifugal force, gives us equilibrium of forces. And, this equilibrium of forces, if 

it is adhered to or invoked in the design of the axial flow turbines, then each of those 

passages would have a radial balance of forces, and then it will be only due to this 

opening up of the passage; which means, near the tips, for example, in this particular 



shape, it would be quite flat. However, near the hub, it is entirely possible that it would 

be acquiring certain amount of radial components. 

So, the designers, by design, quite often try to balance the forces the statics and the 

dynamics, and as a result of which, try to minimize radial flow component to the 

minimum value, so that, one can say that it is very small compared to axial and the 

lateral of the whirl component of the flow.  

Now, this is something which the designers often would like to do by design, at the time 

of designing of the axial flow turbines, if you can do that properly. When the turbine is 

actually operating, it would be more or less, stay very close to this design, assumption or 

what is being invoked by design. Under certain of design operating condition, it is 

possible, that the turbine would indeed acquire a certain unbalance of forces, and a little 

more of the radial flow may come out or come up in the actual operation of the flow 

dynamics or the aerodynamics, and in which case, those are the things that would need to 

be found out through more intense analysis which is essentially a computational 

simulation. 

So, some of those things would have to be found out through intense computational 

analysis before the turbine is, turbine design is finalized. So, some of those things we 

will be talking about when we talk about computational flow dynamics towards the end 

of this lecture series.   
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So, having invoked a simple radial equilibrium equation, the next thing to do is, you 

know, try to find out what are the 3D models or as I mentioned, they are more of pseudo 

3D models, flow models, which you need to be invoked for design, and then immediate 

post design analysis. 

So, the design and the post design analysis would create the turbine or predict the turbine 

performance and its fundamental characteristics, which would, as I mentioned, indeed 

you on would have to be checked or validated first with  intense computational fluid 

dynamics, three-dimensional analysis and later on, much later, when the design is more 

or less final, through rig testing. So, those are time consuming and indeed rather costly 

business. We will look at the design features of modern axial flow turbines and the same 

features are used in immediate post design analysis. 

So, some of the features that we would be invoking, our designers do invoke these days; 

first, of course, is the free vortex law. Now, free vortex law is something we have done 

in some detail with reference to axial flow compressors. So, it is essentially as you know, 

gives us a very simple, handy relation, which tells us how the whirl component should 

vary from root to the tip of a blade, especially of a rotor blade, where the flow otherwise 

is an unknown quantity. 

If we do not invoke a free vortex or any such law, what is happening through the rotor, 

essentially would be unknown or untraceable. So, a vortex law is absolutely essential in 

tracking the three-dimensionality of the flow through the rotor. So, free vortex is the 

simplest thing that can be done and we have done in case of axial flow compressor in 

some detail. 

The one that is used most in modern axial flow turbine is indeed not really the free 

vortex law; in modern axial flow turbine, there are different laws that govern the design 

and design related immediate analysis. And, one of them is our simply known as the 

constant nozzle, exit angle; alpha 2 as we have used in annotations earlier, coming out of 

the stator and the flow coming out of the stator would then be coming out at constant 

alpha 2 from root to the tip of a blade. So, it is going into the rotor with a constant flow 

angle from along the length of the blade, from root to the tip. 

Now, this is to be invoked; this is not going to happen naturally, it does not happen 

naturally; it needs to be invoked or imposed on the design, which means, the blade 



shaped with created accordingly. So, you would have a completely different blade shape 

if you create it with free vortex law and if you create it with constant exit angle feature. 

So, they are two different design loss and indeed they would create completely two 

different looking turbine blade shapes; both stator as well as rotor. 

The third case that we will be talking about today is a relaxation of the free vortex, which 

is called arbitrary vortex case or arbitrary vortex law, which is simply C w into r to the 

power n. Now, n is a variable and we will be talking about that also in today's lecture. 

So, we will talking about these three possibilities as design laws for axial flow turbine, 

and we shall see that there are different from each other, and they would indeed give 

completely different kind of turbine blade shapes. So, depending on what kind of blade 

you are designing, you need to invoke accordingly the design law. 

The early turbine design, very early turbine designs where indeed made with the help of 

free vortex design, which was known to everybody more than fifty years back; and as a 

result in booking those design laws for turbines, as was being done for compressors, was 

a very easy thing to do. And, as in case of compressors, the blades that you get in turbine 

with using free vortex law indeed would tend to be a rather more twisted. 

Now, those twisted blade of turbine that came about, was a bit of a problem later on, 

because a lot of cooling technology needs to be embedded in the turbine blades, which is 

not there in compressor blades. And, this creating, this cooling technology inside the 

turbine blades which are twisted or heavily twisted is a technological problem, it is a 

huge big technological problem; sometimes, it is quite impossible to actually do that and 

of course, it increases the cost of making the turbine blades hugely. 

So, as it is, the cool blade cost is hugely more than a un-cool blade; however, the cooling 

is something we will be talking about very shortly in this lecture series, in some detail. 

So, because of that one reason and the fact that the blades are made of high temperature 

material; the nickel alloys, the mnemonic and the Inconel, and those are high 

temperature, very costly material. So, twisted blade was something that also produces 

high stress levels. So, turbine is a very heated area, the entire blade is highly, you know, 

heated up through high temperature gases and then a twisted blade creates lot of stresses 

due to the temperature gradient along the length of the blade, from root to tip, as well as 

from leading edge to trailing edge. 



So, that kind of an environment for turbines, tells us that, somewhat simple blade shape 

is probably a better choice rather than somewhat twisted, complicated blade shape that 

we have seen in case of compressors. So, in compressors, they are okay, those 

complicated blade shapes; but if you try to use them in turbine, you get into all kinds of 

problems, which are other than aerodynamic problems. And in fact, in case of turbine 

blade design, those are the people - the mechanical designer, the heat transfer people, 

indeed, often have the veto power. They can overrule the pure aerodynamic design on 

the basis of other considerations. 

So, the aero dynamic designer would have to modify his design to accommodate or keep 

room for a blade cooling, as well as to ensure that the blades are not unduly stressed 

during its operation. Because, turbine blades suffer from huge temperature gradient, that 

gives rise to creep and fatigue failure. 

So, those are the very strong issues, based on which turbine design is carried out. And, 

that is one of the reasons why, after the early era of turbine, which were un-cool, the 

blades are not made of, normally not made of free vortex law; they are made of the other 

laws. And, we will talking about all these laws into today’s lecture, one after another. 

So, let us look at some of these laws. 
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First, we take up the free vortex law, which is of course, you know, known to all of you, 

and it simply gives us that C w r equal to constant, and it is applied to the rotor flow 

which, you know, it has a few assumptions behind it. It comes with a radial equilibrium 

and then it comes with the assumption that the enthalpy gradient along the radius is 0; 

that means, it is a, it is a constant enthalpy or iso-enthalpic flow through the turbine. And 

then, of course, one assumes that the flow is going into the rotor; that is, C w 2 into r 

equal to constant. The rotor entry flow is indeed following the free vortex law; that is the 

important consideration, because the rotor flow is the more complex flow. And then, of 

course, a C w is constant from root to tip, C a 2 is constant from root to tip; that is, the 

axial velocity. So, these three are the regular normal assumptions, if you remember, for 

free vortex law. 

So, if you invoke them in the turbine design, you end up getting a rotor specific work 

done; which is also normally part of free vortex assumption, that rotor specific work 

done; that is, h 02 minus h 03. Normally, we write it as U into C w 2 plus C w 3 at any 

station; and, that is into omega r 2 C w 2 minus r 3 C w 3 and this is constant from root 

to tip. 

So, in the third dimension, that is, in the radial direction, now we see that enthalpy at the 

entry is constant, C w 2 into r is constant, C a 2 axial velocity is constant, and now we 

find that specific work done is also constant; that is, work done per unit mass flow is also 

constant from root to tip. That automatically tells us that C w 3 into r is also going to be 

constant from root to tip and it follows that axial velocity at the exit C a 3 is also constant 

from root to tip. 

So, it actually, aerodynamically gives us a very simple flow situation, where a lot of 

things have very nicely constant from root to tip; however, it does give us a very 

complex blade shape, highly twisted blade shape; also in a blade shape, that in which the 

degree of reaction would vary substantially from root to the tip of a blade. Now, that 

variation of degree of reaction may have certain issues. Degree of reaction in a turbine 

can vary again from near 0 to very high degree of reaction, which could be 0.5 0.6; not as 

high as you get normally in axial flow compressors at the tip, but quite high. And, the 

mean, or the, or the mid radius degree of reaction for turbines is somewhat less than that 

of an axial flow compressors. 



So, typically, that symmetrical blading that we have done in case of axial flow 

compressors is normally not done at the mean radius of turbine design. However, at the 

root, the design could go to degree of reaction of 0. Now, degree of reaction 0, as you 

well know, actually produces impulse turbine, which is acceptable; there is no problem 

with thing impulse turbine. But, once the degree of reaction close to 0, you know that the 

reaction component from the gas turbine is now very small. 

Now, in a highly twisted free vortex design, this is a possibility that, that is very strong 

that some part of the blade would have very low reaction component, whereas the upper 

part may have reasonably good reaction component. So, the reaction blade that we have 

talked about in the earlier lectures, would then be actually valid for some part of the, 

outer part of the blade and may not really be valid or available for the inboard part of the 

turbine rotor blade. In which case, you know that the amount of work done by the turbine 

would be somewhat lesser, because you create reaction blades essentially to get more 

work done out of a single rotor. So, if the reaction is not available or somewhat none 

existent in a particular design model, you would know that the work done would be 

somewhat limited by the reaction availability only to the outboard portion of the blade. 

So, that is one of the limitations among the other limitations that we have talked about 

with reference to the degree of reaction, which indeed varies from root to the tip of the 

blade. 

Of course, that brings us to the point, that you could have a constant reaction, axial 

turbine blading; that is entirely possible. Normally, it is not a done thing; people have 

designed axial flow turbines with a constant reaction from root to tip, there is nothing 

fundamentally wrong with that kind of design. But normally, in modern axial flow 

turbines, especially with the aero engines, it is not a done thing; you normally have a 

variable degree of reaction, constantly degree of reaction. 

We are going to not do the details here, but just to mention that, it is a possibility; that 

does exist. And, in the past, long past, long back, people have designed axial flow 

turbines with constant reaction, and it works; there is no reason why it should not work. 

And, the free vortex design, as I just mentioned, have been used earlier, pretty widely, 

but it is not a use thing in many of the modern designs anymore. 



So, if you get degree of free vortex design, this is what you would normally get; very 

similar to what we have received in axial flow compressors. 
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So, the free vortex design essentially gives us the thermodynamic properties are constant 

from root to tip, which means they are constant in the annulus, through which the flow is 

passing in the axial flow turbine. Remember, it is an annular flow and hence its annular 

flow passage over which we are now, kind of invoking, a law which promotes constancy 

over the entire annulus. Then, over the help of all those things, it is comparatively easy 

now to find out that the entry flow angle from the to the rotor; tan alpha 2 can be given at 

any radius can now be related to the one  at the mean radius or the reference radius, 

simply by invoking the radius ratio. 

So, everything kind of gets into the radius ratio in the free vortex designs. The tan beta 2, 

which is a relative flow angle going into the rotor, which is the flow angle which the 

rotor indeed feels, is also relatable to the radius ratio. And then, of course, the inverse of 

the flow coefficient to the turbine, that is U m by C a 2; C a 2 by U m, of course, would 

be the average flow coefficient through the particular turbine rotor. 

In which case, as we have seen, C w 3 into r is constant from root to tip. C a 3 is 

constant, and we can also assume that we have normally used it in free vortex law; it is 

held constant across the rotor; that is, C a 3 is equal to C a 2. So, free vortex law actually 

makes the flow variables in a very simple manner, and this simplicity, of course, is the 



first attraction of this particular law. At the exit, a tan alpha 3, again is a, at any radial 

station, is relatable to the mean value tan alpha 3, which is where normally the design is 

done, as I mentioned earlier; and, we have done that in case of axial flow compressors 

also. So, that is relatable again through simple radius ratio. 

And then, of course, the relative flow angle tan beta 3, which is again relatable to the 

radius ratio and the inverse of the flow coefficient at the exit. The rigorous designers 

may find a these two values different, but a simple design would tell us that C a 2 is 

equal to C a 3. So, the flow coefficient at the entry and the flow coefficient at the exit are 

indeed equal to one another. However, as we have seen that the length of the blade at the 

leading edge and at the trailing edge could be different. So, the values of the variation of 

this could be different at the exit of the rotor, compared to that at the entry to the rotor 
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If you look at the drawing here, it tells you very clearly that at the exit side, the radial 

variation is far more than at the leading edge or the entry of the axial flow turbine rotor. 

So, those are the simple things that we can get out of a free vortex design. And as I 

mentioned, it does give us a very simple flow feature; however, it does create a complex, 

somewhat twisted and more complex a blade shape. 

The other blade shapes which people then resorted to, is simply called the constant 

nozzle exit angle model. Now, this model has been essentially created for the more 

practical purpose of accommodating cooling. It creates a nozzle or stator blades with 0 



twists, so that, the flow comes in at alpha 1, goes out at alpha 2, saying from root to the 

tip of the blade. 

So, this untwisted stator nozzle is the first thing that we wanted and one of the reasons is, 

the stator nozzles face very high inlet temperature coming from the combustion chamber; 

and, it normally, for a long, long time now, at least, last 40, 50 years. The first stator 

nozzle is embedded with very elaborate cooling mechanism. To have all that cooling 

mechanism inside the blade requires that the blades blade itself does not have complex 

shape or a twist or a large twist. 

So, the turbine blade designers, very quickly, decided to adopt this particular design 

philosophy to create untwisted stator blade, so that the cooling can be efficient. Because, 

for the last 50 years, the advancement of turbine design has been more through the 

cooling technique and by increasing the turbine entry temperature to get more work out 

of turbine, rather than creating more and more complex aerodynamic shapes. So, in some 

sense, the aerodynamics of the flow may have been slightly compromised to create an 

elaborate cooling mechanism. 

So, what we get is, alpha 2 is constant from root to the tip of the blade; if alpha 1 is also 

constant from root to the tip of the blade, which is sometimes true, especially in the first 

stage of the HP turbine, then you indeed have a untwisted blade. If alpha 1 is some 

variable in the later stages, you have a mildly twisted blade, which can stay, 

accommodate or have embedded cooling mechanism. 
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So, with this simple invocation of the constant exit angle, if we move forward, what we 

get is a simple mathematical model in which now cot alpha 2 which is equal to C a 2 by 

C w 2, the ratio of axial and whirl component; now, that is a constant from root to the tip 

of the blade. 

Now, as we can see, C a 2 would be equal to C w 2 into cot alpha 2; if you take a simple 

differentiation of that, that yields that d C a 2 d r will be equal to d C w 2 d r cot alpha 2. 

And, if we use this in the energy equation, if we import the energy equation that we have 

used in creating the radial equilibrium; in case of compressors, if you remember, it was 

and can be invoke it here or bring it back here again, d h d r that is the enthalpy variation 

in the radial direction a C a into d C a d r plus C w into d C w d r plus a C w square by r, 

and the last term, of course, comes from the radial equilibrium. And then, if we invoke d 

H d r equal to 0; that means, enthalpy variation in the radial direction is 0, that is 

enthalpy is constant, it is iso-enthalpic flow over the entire annulus; if that is so, then the 

right hand side goes to 0 and on the left hand side, we have C a to C a d r plus C w d C w 

d r plus C w square by r, and that would then be 0. 
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So, energy equation is brought in here. If we now, substitute this in this energy equation, 

we get C w 2 into cot square alpha 2 into d C w 2 d r; invoke it at the entry to the rotor. 

We are invoking the energy law at the entry to the rotor, as we have done in case of 

compressors, and then we get with this design law of a turbines; we get a situation that C 

w 2 to d C w d r and C w 2 square by r, and that is equal to 0. 

So, rewriting that, we get C w 2 into 1 plus cot square alpha 2 into d C w 2 d r plus C w 2 

square by r equal to 0, and this yields 1 plus cot alpha square is sin square alpha 2 and 

then, you will get d C w d r equal to minus sin square alpha 2 d r by r. 
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Now, this on integration, this is derived equation from the energy equation by invoking 

the constant exit angle law, turbine design law. And, having arrived at here, if we simply 

carry out the integration, it gives us C w 2 into r to the power sin square alpha 2 equal to 

constant. Now, this you can see is a different equation, very different from the one we 

had for free vortex law. And then, of course, we get C w 2 into C w 2 m; that is related to 

the mean radius or the mid radius of a turbine, with the radius ratio into sin square alpha 

2. So, the variation of the parameters now is beginning to look quite different from that 

we had got in case of free vortex design. And then, of course, the axial velocity variation 

also falls in line in the same manner and hence we can write, C a 2 into r to the power 

sine square alpha 2, and that would be equal to constant from root to tip. 

So, the variation in the radial direction is now governed by sine square alpha 2 that is the 

index. And then, we can get C a 2 variation along the radius, similar to C w 2 as C a 2 m 

into r m by r to the power sine square alpha 2. And, in terms of the absolute velocity C 2, 

we can then write down C 2 would be C 2 into C 2 m to the into r m by r to the power sin 

square alpha 2. So, all of them now use this alpha 2 as a parameter, which is invoked in 

case of this present design law. 
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So, at the rotor inlet station, we have put alpha 2 equal to constant and hence C w 2 by C 

w 2 m is equal to C a 2 by C a 2 m is equal to C 2 by C 2 m and all of them are equal to r 

by r m. So, they are all related to the radius ratio; all velocity components are directly 



related to the radius ratio. 
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Now, this constant exit angle from the stator nozzle has still three possibilities, additional 

three possibilities. The additional possibilities are, you can have constant H 03 at the 

rotor outlet; that is, enthalpy is constant at the rotor outlet, as we had indeed got in case 

of free vortex law or you can have 0 whirl component at the rotor outlet; that means, 

alpha 3 equal to 0, indeed C w 3 would be equal to 0. And then, we could have free 

vortex again brought back, continued at the rotor outlet. So, it is possible to look at now, 

what would be the flow at the rotor outlet from three different possibilities. 

So, let us look at the three possibilities.  
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If you have constant total enthalpy at the outlet, U is equal to C w 2 plus C w 3, that is 

equal to delta H 0, that is the work done through the turbines or work being created by 

the turbine through the hot gas passing and the whirl component of the velocity at the 

rotor outlet is indeed found form from C w 3 is equal to delta H 0 by U minus C w 2. 

Now, the first time here, can be written in terms of K by r, K being delta H 0 by omega; 

omega is the angular velocity of the rotation of the turbine rotor. 

Now, rotor is the only one which is doing work; stator, if you remember, it does not do 

any work. So, the angular velocity of the work done of the rotor and then that ratio can 

be taken to be some kind of a constant value for design purposes. Now, you can also find 

C a 3, which can be computed; once you get C w 3, you can sit down and do a little bit of 

a vector analysis, very quick velocity diagram, with the velocity diagrams, and you can 

find what would be the value of axial velocity at the rotor outlet, which could be again 

take a form out of this. Now, both of which can be then computed from root to the tip of 

the blade. 

Now, using the kind of variation that we have seen in the earlier slides, so, it is now 

possible to create C w 3 and C a 3 at the rotor outlet, with the help of this particular 

assumption. 
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If we go for the next assumption, that is the whirl component is 0 at the rotor outlet, that 

is alpha 3 is 0; this means, that d H d r would be equal to C a 3 into d C a 3 d r. And then, 

one can write down C 0 3 is equal to H 0 2 minus U into C w 2; and, a C w 2 can be now 

written down in terms of C w 2, at any station, any radial station, can be written down in 

terms of the mean radial station as we have done before; I substituted with C w 2 m into r 

m by r to the power sin square alpha 2. Now, this produces the enthalpy distribution 

radially at the exit as d H d r equal to d d r into U into C w 2 m into r m by r to the power 

sin square alpha 2. 

So, this is how you get the enthalpy variation radially; the earlier one which we did just 

did, was that the enthalpy was constant; that means, the radiation would be 0. Now, we 

find that there is enthalpy variation along the length of the blade. 
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The third condition that we can invoke is the free vortex law, which is to be applied at 

the rotor exit. Now, free vortex law is somewhat we are familiar with. And, if you do 

that, invoking the free vortex laws that we have done in the earlier slides, if you bring 

them over here and simply apply them at the rotor exit, you would get a C a variation; C 

a which can be written down or expressed in terms of C a 3 square equal to C a 3 medial 

square plus twice u m into a C w 2 m into 1 plus r by r m to the power cos square alpha 

2. 
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Now, this expression would also be valid for this particular case; which means, the C a 

variation that you get in case b, would be very similar to that you get in case 3. So, axial 

velocity variation can also be found by using the laws that we have prescribed. 
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The third possibility that we have talked about is the arbitrary free vortex case or the 

relaxed free vortex case, in which C w is equal to r to the power n; instead of writing C w 

2 into r equal to constant, we are saying that C w has an equality to r to the power n. 

Now, this value of n is, can be now varied. Now, if you put n equal to minus 1, it 

actually, if you remember, resolves to free vortex model. So, that something is which we 

have already done before. The other one which, if you put n equal to 0, it resolves to 

constant vortex model or constant; it is not necessarily constant reaction, it is a constant 

vortex law; not constant free vortex, but constant vortex from a root to the tip of the 

blade. 

On the other hand, if you put n equal to 1, it gives what is simply known as solid body 

rotation; that means, the flow would be simply directly proportional to r; like, for 

example, u is omega r, so all other parameters would also be directly proportional to r, 

rather than being inversely proportional, as in case of free vortex laws. So, in some 

sense, this is the inverse of free vortex model. 

The third possibility is where you have n equal to minus 2; in case of compressors, we 

had seen it produces somewhat different kind of a blade loading. It is same in case of 



turbine, it produces a different kind of blade loading and indeed, it produces vortex 

strength that is different, most likely higher vortex strength at the various sections of the 

blade, if you invoke this law. 

Now, what the modern designers are doing, turbine designers, as in case of axial flow 

compressor designers, they invoke these laws in various parts of the blade. So, you do 

not have the whole blade; actually, a design as per any one of these laws, various length 

of the blade is designed as per one of these laws. So, you can have one kind of law in one 

part of the blade and other kind of law in other part of the blade, and then, of course, the 

blade would have to blend into a smooth shape through geometrical modeling and 

aerodynamic analysis. So, modern designers often invoke more than one law in creation 

of one single turbine blade rotor. So, this is how the design indeed proceeds in the 

modern axial flow turbine blade creation. 

So, we have gone through various design models, the design models essentially are, what 

I mentioned, pseudo three-dimensional flow models in the sense, they tried very 

assiduously, very consciously and deliberately to avoid creating the radial flow model, a 

radial flow complaint. So, the radial component is very deliberately tried to be avoided in 

the design, so that, radial flow is not created through aerodynamic pressure gradient or 

aerodynamic laws; however, if the geometry of the flow, somehow brings in certain 

amount of a radial flow component and there is nothing much, you know, you can do 

about that. And we have seen in the earlier lecture, that some of the blades indeed do 

have strong radial component due to the variation of the annular flow track, which is 

curvilinear and diverging flow track. 

So, there is nothing much you can do there, but the blade designer tries to ensure that 

radial flow is not created by the operation of the turbine blade rotors. So, this is how the 

design is normally proceeded with in the modern axial flow turbine. And so, in today's 

lecture, we have talked about the design loss. In a lecture later on, we may have a look at 

some of the design features, design steps and indeed some of the aerofoil sections or the 

blade sections; I do not know whether you can really call the aerofoils, but the blade 

sections that are used in axial flow turbine design. 

In the next lecture, we will be actually looking at some of these 3D or pseudo-3D or 

quasi-3D flow theories that we have done today and try to use them in solving a few very 



simple standard problems. So, we shall have a quick understanding of the numericals, of 

how this design laws actually come up with numbers in case of axial flow turbines. 

So, next class will be a problem solving class. So, I will bring a couple of problems for 

you, for you, to have a look at solved problems and then I will leave you with a few 

problems for you to solve by yourselves. So, in the next class, we will be doing problems 

on axial flow turbines using three dimensional flows, laws that we have done in today's 

lecture. 


