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Hello and welcome to lecture number 31 of this lecture series on jet aircraft propulsion. We

have covered quite some distance in terms of discussing various aspects of jet engines. We

have discussed in detail about the ideal and real cycles of jet engines. Subsequently, we have

taken  up  individual  components  like  the  intakes,  the  compressors  and  fans,  combustion

chambers, turbines and finally the nozzle. And so, all these components as individual entities

where analyzed. And we have discussed about the geometric construction of these different

components  and  also  different  performance  parameters  which  are  associated  with  these

components. 

And  at  the  last  few  lectures,  we  were  discussing  about  two  of  the  other  important

components, which ofcourse form part of the whole engine; the air intakes and the diffuser

and the nozzles. We have in detail discussed about different types of air intakes the subsonic,

the supersonic and the variable geometry intakes and so on. We have also discussed about

performance parameters associated with air intakes like distortion pressure recovery and so

on.  Subsequently,  we  also  discussed  about  the  nozzles;  what  are  the  different  types  of

nozzles; how is the subsonic nozzle different from a supersonic nozzle and why should there

be difference between these two types of nozzles and again how to analyze performance of

different nozzles.

So, these are these were some of the topics that we have been talking about in the last few

lectures. So, I think it is just the right time that we also start discussing about how we can

solve some problems on intakes and nozzles; that is based on what we have discussed so far.

Can we now take up a few numerical problems and try and solve them. So, that we get a

better idea of what is actually happening in in the nozzle and and the diffuser and so that, we

get some feel of the numbers associated with diffusers and nozzles or intakes and nozzles. So,



today’s lecture, we are going to devote entirely to towards a tutorial on intakes as well as

nozzles. 

So, we are going to talk about different… We will infact I have sorted out four different

problems for you. The first two problems are to do with intakes. One is for subsonic; the

other second problem would be for a supersonic intake involved shocks. And subsequently

for nozzles,  I have first the convergent nozzle which basically a subsonic nozzle. Then I

would be taking up a problem which is on a convergent-divergent nozzle which is basically a

supersonic nozzle. So, after this I will also list out a few exercise problems for you; which

you can solve or you can attempt to solve based on what we have been discussing in the last

few lectures as well as based on the tutorial that we are going to have today.

(Refer Slide Time: 03:18)

So, today’s lecture is basically going to be a tutorial session.  We are going to talk about

intakes and nozzles and different problems associated with these two cases.



(Refer Slide Time: 03:30)

So, as I said, the first problem that we are going to discuss about will be on subsonic intake.

So, basically it is related to a turbo fan engine which is what is used in normal civil air civil

transport aircraft and the turbofan engine, which operates around at a Mach number of 0.9 at

an altitude, where the ambient temperature and pressure are minus 56.5 degree Celsius and

22.632 kilo Pascal respectively. The mass ingested in the in to the engine is 235 kilo grams

per second through an inlet area of 3 meters square. If the diffuser efficiency is 0.9 and the

Mach number at the fan entry is 0.45, calculate the capture area; part b, static pressures at the

inlet and the fan face; the velocities part c is velocities at the inlet and the fan face and part d

is the diffuser pressure recovery.

So,  this  is  a  problem which  is  for  purely  a  subsonic  aircraft.  Therefore,  this  is  normal

subsonic intake that we have seen. So, subsonic intake as we have discussed is like a very

simple diffuser, which is used in subsonic flow. It will basically involve a diverging or an

increasing  area  along  the  axis.  So,  in  this  subsonic  intake,  we  have  been  given  a  few

parameters like the altitude at which the aircraft is operating in the Mach number. Then we

also have the intake area, the inlet area as such and also the Mach number at the fan face. So,

based on the on these data that has been provided, we are required to find out a variety of

other things like static pressure, temperature, then the capture area and so on. 

So, we will first begin with calculating what is the corresponding Mach number at… well

Mach number is given as 0.9. So, can we not calculate the velocity associated with this Mach

number? Once we calculate  velocity, we also know the  free stream density;  because the



temperature and pressure are given. So, density can be calculated and therefore, mass flow

rate well the capture area can be calculated; because mass flow rate is given. So, mass flow

rate divided by the product of density and velocity gives us the capture area and then we will

see how that compares with the inlet area, which has been specified to us.

(Refer Slide Time: 06:02)

So,  let  us  do  this  calculation  first.  So,  ambient  temperature  is  given  as  216.5  Kelvin.

Therefore, from this, we can calculate the flight speed which is u; Mach number is known 0.9

into square root of gamma R T, which is the speed of sound. So, Mach number times the

speed of sound which is in terms of static temperature. So, we can calculate speed of sound

square root of gamma R T is the speed of sound multiplied by Mach number and therefore,

the flight speed can be calculated as 271.6 meters per second. Now, we can now calculate the

free stream density; because the ambient pressure is given; the temperature is also given and

gas constant for air we can assume as 289 well 287 joules per kilogram Kelvin.

So, from this, we calculate density; pressure is known; temperature and gas constants. So, we

calculate  this  as  0.3479 kilograms per  meter  cube.  Therefore,  we can  now calculate  the

capture area. Capture area is simply the ratio of the mass flow rate times density and velocity.

Mass flow rate is given as 235 divided by density which is 0.3479 multiplied by 271.6. So, if

you  calculate  this,  you  would  get  the  capture  area  as  2.486  meter  square.  So,  you  can

immediately see that this capture area is smaller than the inlet area. Inlet area is specified in

the problem as 3 meter square. Capture area we have calculated as 2.486.



Now, if you recollect our discussion on subsonic intakes, where I had discussed about two

operations or two different regimes of operations of the air intake, one was during takeoff and

the other was during the cruise. And during cruise as we know, the thrust requirement is not

as high as it is during takeoff; which means that the capture area upstream which will provide

the necessary mass flow to the intake or the engine would be smaller than the air intake inlet

area itself. So, here in this case, the air intake inlet area is given as 3 meter square. We have

just now calculated the capture which is about 2.5 meters square. You can clearly see that the

capture area is smaller than the intake entry area. 

This is typical of a subsonic intake operating during cruise operation, which is high speed and

low  mass  flow  requirement;  because  thrust  requirement  is  lower.  This  is  unlike  during

takeoff. During takeoff, it is the other way round wherein the mass flow requirement would

be  high;  because  the  engine  needs  to  generate  the  maximum  thrust  during  takeoff.  So,

because the mass flow requirement is high and the velocity is not high enough, the capture

area would be much higher than the intake entry area itself; in in which means that before the

inlet begins, there is actually an acceleration of the flow; because the capture area and the

stream tube will  now converge towards the intake entry area.  So,  this is how a subsonic

intake would be operating during cruise. So, let us proceed further and calculate the other

parameters.

(Refer Slide Time: 09:20)

Now, during  there  is  one  thing  that  I  mentioned  here  in  today’s tutorial,  you  would  be

requiring the gas tables and the shock tables. So, I would suggest that you have the gas tables



and the shock tables handy; because our problem solving in today’s tutorial will involve use

extensive use of gas tables and shock tables. So, if you have the gas tables with you, you will

need to fill pages and see that for a Mach number of 0.5, you will find that the area ratio

corresponding to this is 1.00886. Area ratio is A by A star which is where A star is the fort

area. So, this is 1.00886. So, this would be available in any gas table or infact in some of the

text books also, you will find gas tables given towards the end of the text book. 

So, here A star can now be calculated which is 2.486, which is the capture area divided by

1.00886. So, if we calculate this, we would get 2.465 meter square. So, we also have the inlet

entry area which has been given to us. So, we can also calculate A1 by A star. A 1 is given as

3 meter square; A star we have just now calculated as 2.465. So, 3 by 2.465 is 1.21 square

meters 217 meter square. So, this is the ratio of the intake entry area to the throat area. So,

from the gas tables again for this corresponding area ratio, we can calculate that the Mach

number associated with this area ratio is 0.577. So, this will be the Mach number which we

can  calculate  for  the  intake  entry. Now, once  we know this  Mach  number, we can  also

calculate the corresponding temperature pressure ratio etcetera again from the gas tables. 

I will also discuss a little later after we finish this that we can also solve the same problem

using theoretical expressions. I will derive some equations which you can use to solve the

same problem in  a  in  a same way. But  it  is  not  using  the  gas  tables;  but  using  simple

formulae.  After  all  the  gas  table  is  based  on all  these  formulae,  so  either  we know the

formulae and solve the problem or we simply use the gas tables. So, gas table is just for

convenience that uses all these theoretical expressions, analytical expressions and they have

been tabulated for different Mach numbers corresponding temperature pressure ratios. So, we

will I will also explain that procedure after we have finished this. So, for this Mach number,

we have  just  now calculated  which is  0.577.  We can now calculate  the  temperature  and

pressure ratios.



(Refer Slide Time: 12:21)

So, if you go to the gas table, again you will find the pressure ratio that is static to stagnation

pressure ratio P 1 by P 0 1 which is 0.798. The corresponding temperature ratio for Mach

number that we have seen is T 1 by T 0 1 that is 0.93757. Now, we are going to… because it

is an adiabatic flow, we can safely assume that and it is subsonic. So, it can be safely assumed

that T 0 1 is equal to T 0 a; that is the stagnation temperature at the intake entry is equal to the

free  stream stagnation  temperature.  Similarly, P 0  1  will  be  equal  to  P 0  a.  So,  having

calculated these; that is the stagnation temperature and pressure; since the ratio is known, we

can now calculate the static pressure and the static temperature. 

So, P 1 is because this ambient pressure is known, we can calculate P 1 which is 30.547 kilo

pascal. Similarly, T 1 is 246.9 Kelvin. So, having calculated this static temperature and we

also know the Mach number at station 1, we can now calculate the speed of velocity that is u

1 at the intake entry. So, u 1 would be M 1 into square root of gamma R T 1. M 1 is known as

0.577 which we have calculated in the previous slide. So, that multiplied by the speed of

sound at station 1 square root of gamma R T 1; this is 181.7 meters per second. 

Now, it is also given that the Mach number at the fan phase is 0.45, which is typical of

subsonic aircraft. Infact, the Mach number at the fan phase is usually of this order would be

around 0.4 to 0.5; between 0.4 and 0.5. So, that has been specified. So, for a Mach number of

0.45, we can calculate the pressure ratio which is again from the tables. So, we get P 2 by P 0

2 as 0.87027. Now, in this question, we have also been given the diffuser efficiency and we

have we have earlier related the diffuser efficiency to the pressure ratio P 0 2 by P a is 1 plus



eta d which is the diffuser efficiency multiplied by gamma minus 1 by 2 M square the whole

raise to gamma by gamma minus 1.

(Refer Slide Time: 14:52)

So, from this, we can calculate P 0 2 by substituting the values; we know the M 2; we also

know P a.  So,  we can calculate  P 0 2; efficiency has  also been given as 0.9.  So,  if  we

substitute those values, we calculate P 0 2 and that comes out to be 36.442 kilopascals. And

we also know that P 2 and P 0 2 that is the stagnation pressure and temperature are related to

the isentropic relation. Therefore, P 2 is P 0 2 divided by 1 plus gamma minus 1 by 2 M 2

square raise to gamma by gamma minus 1. We again substitute these values here; we get the

static  pressure  at  station  2  as  31.714  kilopascal.  Similarly,  we  can  also  find  the  static

temperature at station 2 which comes out to be 253.1 Kelvin. 

Now, once we are calculated static temperature at station 2, we can calculate the flight speed

or the velocity which is Mach number time square root of gamma R T 2, where Mach number

at station 2 is 0.45. So, this multiplied by T 2 which is 253.1.We get u 2 as 143.5 meters per

second. So, once we have calculated u 2 well that was one of the aspects we need, we were

required to calculate velocity at station 2. The final thing that we are required to calculate is

the pressure recovery. Pressure recovery as we know it is the ratio of the stagnation pressure

at the intake exit to the stagnation pressure at the entry. Between P 0 a and P 0 1, there are no

losses. 

Therefore, P 0 1 should be equal to P 0 a and therefore, pressure recovery is P 0 2 divided by

P 0 a. P 0 2 we have calculated as 36.442; P 0 a we know is given that is 38.278. So, this



pressure recovery is 0.952. So, this is one way of solving this problem that we have just now

discussed which was using the gas tables. So, it is a very simple way of solving; because if

you have the gas tables with you, you can effectively make use of the gas tables to solve such

problems. What you notice is that for a subsonic intake that we have just now solved. 

The pressure recovery is of the order of.9 5 which means that there is still a pressure loss in in

terms of stagnation pressure loss occurring in the diffuser, which is of the order of 5 percent.

So, this pressure loss is purely because of the frictional effects as we have discussed earlier

and ofcourse in most of the intakes, it would be very low. It is probably on the higher side

that we have just calculated. Usually, it is 2 to 3 percent that goes into the pressure loss alone,

unless ofcourse there is a flow separation. So, we will now proceed towards solving the same

problem using slightly different approach. 

But effectively they are one and the same; because the first approach that we have just now

solved is using the gas tables. Now, what we are going to use is we will basically be deriving

equations  which  we  have  also  we  discussed  earlier  on  for  calculating  some  of  these

properties. Infact, the tables would be using exactly the same equations; but they have already

been calculated  and tabulated  at  the  form of  tables.  So,  you could adopt  either  of  these

approaches and you should be getting exactly the same answers; because they are one and the

same in some sense of the other. So, let us take a quick look at how the same problem can be

solved in a slightly different way.

(Refer Slide Time: 18:32)



So, in during if you want to use equations or expressions to solve this problem, let us now

calculate the mass flow rate for example. So, this ratio that is m dot by A is basically equal to

density times velocity; density we know is P by R T and velocity is M into square root of

gamma R T. So, this we will express in terms of total temperatures and pressures. So, we

have M times P naught by 1 plus gamma minus 1 by 2 M square raise to gamma by gamma

minus 1; that is the pressure into square root of gamma by R; because there is a gamma here

and R square root gamma R here and another R here. So, that becomes square root of gamma

by R. 

Temperature will express in terms of stagnation temperature. So, this becomes square root of

1 plus gamma minus 1 by 2 M square divided by T naught. Let us simplify or rearrange this

and simplify; we have m dot by A 1 P 0 1 multiplied by square root of R T 0 1 by gamma.

This is equal to M 1 divided by 1 plus gamma minus 1 by 2 M square raise to gamma plus 1

by 2 into gamma minus 1. So, these we have use the same equation. But this has been applied

for station 1; which is why you see subscripts of 1 here for temperature and pressure and as

well as Mach number. So, this relates the mass flow rate and the inlet stagnation pressures

and temperatures to the corresponding Mach number.

(Refer Slide Time: 20:05)

So, in this  equation that  we have seen this  equation that  we have just  now seen;  all  the

parameters on the left hand side are known. We know m dot; we know A 1, P 0 1, T 0 1; all

these are known; Mach number is not known. So, Mach number obviously has to be solved a

little  iteratively  and  once  we  do  that,  we  can  determine  the  Mach  number  in  station  1



iteratively. So, once we calculate Mach number, the static temperature and pressure can be

easily calculated. T 1 can be determined by T 1 is T 0 a because T 0 1 and T 0 a are the same

divided by 1 plus gamma minus 1 by 2 M 1 square. Similarly, P 1 is P 0 a divided by 1 plus

gamma minus 1 by 2 M 1 square raise to gamma by gamma minus 1. Now, to find properties

at station 2, we have the efficiency definition. So, we have P 0 2 divided by P a is equal to 1

plus eta d into gamma minus 1 by 2 M square raise to gamma by gamma minus 1.

(Refer Slide Time: 21:05)

So, we can once we find P 0 2, we can find pressure recovery involved all we need to find is

the velocity at station 2. Therefore, T 2 that is static temperature at station 2 is T 0 a divided

by 1 plus gamma minus 1 by 2 M 2 square; M 2 is given to us. Similarly, P 2 is P 0 2 by 1

plus gamma minus 1 by 2 M 2 square raise to gamma by gamma minus 1. So, u 2 can be

calculated; because M 2 is known, T 2 is also known. So, we can calculate the velocity at

station 2 and which is Mach number time square root of gamma R T 2. So, in this approach

that we have solved, we can also as we have seen ofcourse I have not really substituted for

the parameters here; because I  assume you can do that because we have already done it

during the different approach. 

So, you can use either of these approaches; either the gas tables or the second approach as

you can see. If you start from the fundamentals if you start from the fundamental principles,

you can easily solve this problem; because Mach number you can equate mass flow rate to

density times velocity and then continue to express them in terms of static pressures and then

stagnation pressures and temperatures. And therefore, you have expression for mass flow rate



related to stagnation pressure, stagnation temperature and the Mach number. And therefore,

one can easily solve this problem also by using these expressions.

So, it is up to you to choose and decide which option you would like to exercise and solve

this problem for based on which. So, either of these procedures that you use methods that you

use, you should get exactly the same answers. So, the first problem that we have just now

solved is pertaining to a subsonic diffuser. We will now take up a supersonic diffuser which

will  invariably  involved  the  presence  of  shocks;  which  means  that  for  the  solving  this

problem, you will need the shock tables and possibly the shock chart or the theta beta m or

delta beta m as it is in some books, relation or the plots.

Because that will be required for calculating lot of the parameters associated with the shock. I

am assuming that you have already undergone a course in gas dynamics; wherein you have

had some exposure to  shock flows and you know how to solve flow properties across a

shock;  because  that  will  be  essential  to  understanding  of  this  question.  If  you  have  not

undergone, I would urge you to just go through any text book on gas dynamics, where they

deal with flow through oblique shocks and normal shocks and how to use these normal shock

and oblique shock tables. So, let us take a look at the second problem that we have for today.

(Refer Slide Time: 23:55)

So, this is a mixed compression two-dimensional intake which is supersonic and there is a

figure for that. So, consider the mixed compression two-dimensional supersonic intake as

shown in the  figure.  The free  stream Mach number  is  3  and the  intake  has  three  shock



systems as shown in the figure. Determine the overall pressure ratio, total pressure ratio and

the overall static pressure ratio.

(Refer Slide Time: 24:22)

So, this is the problem that is at hand for us now. This is the supersonic intake. It is a mixed

compression intake; because there is one shock which is just at the exit. This is just outside

the intake entry itself. So, this is a mixed compression intake. There are three shocks which

are used to decelerate the flow; two of them are oblique shocks. This and this shock these are

two oblique shocks and then there is a normal shock, which converts a supersonic flow to a

subsonic flow and these are the wedge angles given it is a two-dimensional intake. So, there

is a ramp angle which is of 5 degrees here and there is also a wedge angle at this side. 

The four body angle which is about 15 degrees. The free stream Mach number is 3. So, let us

denote station just before the first oblique shock at station 1; just after the oblique shock first

oblique shock as station 2, which also happens to be the upstream of the second oblique

shock. Downstream of the second oblique shock is station 3; downstream of the normal shock

is station 4. So, you can see that these oblique shocks basically deflect the flow in such a way

that the flow can take this turn and eventually, the 4 flow takes apart which is parallel to the

surfaces. 

So, the oblique shocks there are two of them will decelerate the flow in steps; from Mach 3, it

will reduce to a supersonic Mach number which is less than 3. Across the second oblique

shock, the flow is further decelerated. It will still be supersonic and after the normal shock,

the flow becomes subsonic and that is at station 4, it would be a subsonic flow. So, to solve



this problem, we will make use of the shock tables and so am assuming that you have the

shock tables with you at present. So that, you can understand what is been discussed about in

this problem.

 (Refer Slide Time: 26:20)

So, the first oblique shock has an upstream Mach number of 3 and it has a wedge angle of or

deflection angle of 15 degrees. So, deflection I have denoted here as delta. So, delta at station

1; therefore delta 1 is 15 degrees. So, if you take up the shock tables you will or the shock

chart, you will find that for a deflection angle of 15 degrees and the Mach number of 3. The

shock angle the corresponding shock angle which is beta 1 would be 32.25 degrees. So, we

have we now have the  shock angles  as  well  as  the  deflection  angle.  Therefore,  we can

calculate  the  Mach number the component  of  the  Mach number, which  is  normal  to  the

oblique shock. So, M 1 n would be M 1 sin beta 1. So, M 1 n will be M 1 sin beta 1 which is

3 into sin 32.25 which is 1.6. 

And so from the normal shock tables, for this Mach number which is the normal component

of the incoming Mach number at station 1. So, M for M 1 n is equal to 1.6, we can find out

the downstream Mach number M 2 n which will be a subsonic number. So, it will be less than

1. From there, we can calculate M 2 which will be M 2 n divided by sin beta 1 minus delta 1.

Therefore, we can get the downstream Mach number at station 2 which is 2.25. When you

look at this shock tables, you will see that for this Mach number 1.6, you will get downstream

Mach number which is normal to the oblique shock which will be subsonic. But the actual



Mach number will  continue to be supersonic;  because the actual Mach number is M 2 n

divided by sin beta 1 minus delta 1. So, you get a Mach number of 2.25.

(Refer Slide Time: 28:16)

So, for this Mach number that we have seen from the normal shock tables, we can also find

out the corresponding stagnation pressure ratios as well as it stagnation where static pressure

ratios. So, P 0 2 by P 0 1 which is 0.8935 and P 2 by P 1 is 2.82. So, this will also be given in

the normal shock tables as you solve the problem. Now, for the second region, we now know

that the deflection angle delta 2 will be a sum of the first two angles. So, let us go back to that

chart again. (Refer Slide Time: 24:22) So, here the flow has been deflected by 15 degrees in

this case; because there is a deflection from here as well as a deflection because of this. The

effective deflection  became becomes 15 plus 5 degrees and that is 20 degrees; because  the

both these deflections will have an effect on the second oblique shock.

So, for region 2, the deflection angle delta 2 is 15 plus 5 which is 20 degrees and so we know

the  Mach number absolute  Mach number at  station 2 is  2.25.  So, for a deflection of 20

degrees, we can calculate the shock angle as 46.95. So, having calculated the shock angle, we

now proceed to find the absolute Mach number M 3 in the same way as we calculated M 2.

What we will do is we will resolve M 2 into the normal component that is M 2 n, which is M

2 sin beta. And then we calculate the downstream Mach number from the normal shock tables

for the M 2 and we get M 3 and which is the normal component of the Mach number at

station 3. And therefore, absolute Mach number M 3 would be M 3 n divided by sin beta 2

minus delta beta minus delta 2.



So,  from there,  we get  the absolute  Mach number. Having calculated the absolute  Mach

number, we can also now calculate the static pressure ratio as well as a stagnation pressure

ratio. For the third shock which is the normal shock, we can use the Mach number as it is

from the normal shock tables. We do not have to resolve it anymore; because the normal

shock is 1, where the incoming Mach number will be at an angle of 90 degrees to the flow.

So, across from station 3 to 4, it is a normal shock; we just use the normal shock tables as it

is. So, having done that, we can calculate M 3 in the same way as we calculated M 2. M 3

will come to be 1.444 and the corresponding stagnation pressure ratio is 0.878 and the static

pressure ratio is 2.992.

(Refer Slide Time: 31:04)

So, from the shock normal shock tables for the same upstream Mach number of 1.144, we use

the normal shock tables and interpolate and we get M 4 as 0.7219. Corresponding stagnation

pressure and static pressure ratios are P 0 4 by P 0 3 is 0.9465 and static pressure ratio P 4 by

P 3 is 2.333. So, the overall pressure ratio the static pressure ratio well a stagnation pressure

ratio P 0 4 by P 0 1 is the product of the three pressure ratios. We get P 0 4 by P 0 3 multiplied

by P 0 3 by P 0 2 multiplied by P 0 2 by P 0 1; that is 0.9465 into 0.878 into 0.8935; that is

0.7865. Similarly, the static pressure ratio,  we get  P 4 by P 3 multiplied by P 3 by P 2

multiplied by P 2 by 1. So, this product comes out to be 19.691. 

So, what you see here is that between the exit of the intake and the inlet, there is a drastic

reduction in the stagnation pressure close to 122 percent drop in the stagnation pressure.

Which is why, the exit stagnation pressure is only 0.78 times the inlet stagnation pressure. On



the other hand, there is a substantial increase in the static pressure. Exit static pressure is

almost 19.7 times that of the inlet static pressure. So, there is a substantial raise in static

pressure  across  the  shock  system.  At  the  same  time,  there  is  also  a  loss  in  stagnation

stagnation pressure across the shock system. If you had calculated the same thing for a single

Mach number, I would leave that as an exercise for you. 

So, instead of three shocks that is two oblique shocks and a normal shock, let us say we had

only one normal shock and the upstream Mach number is 3. And so for this normal shock if

you were to calculate and find out what is the static pressure raise and stagnation pressure

raise, you can compare that with this and you will see the difference. If you were to do that,

you will see that the stagnation pressure loss across such such a system which involves just a

normal shock would be substantially higher. So, if you had only one normal shock which was

decelerating  a  very  high  Mach  number  flow of  Mach 3  to  low subsonic,  the  stagnation

pressure loss can be tremendously high. 

Which is a reason why, one would not want to use a single normal shock not just because it

leads to lot of stagnation pressure, there are also other issues like the stability of the shock

itself in terms of the shock having to be located right at the intake entry. Because if it  is

upstream of the intake, there will be spillage drag; if it is downstream, then there are other

issues  associated  with  it.  And  so  besides  this,  ofcourse  stagnation  pressure  loss  can  be

substantially high; which means there is lot  of loss of thrust.  As a result  of this, drop in

stagnation pressure. So, we have so far now solved two problems. One was related to a low

subsonic intake; the first one which was used for a civil aircraft. 

Second one was a mixed compression intake which involves two shocks and two oblique

shocks and a normal shock and we have seen how we can go about solving this problem. As I

suggested, you should be using the tables; you should have the tables handy with you. The

shock tables as well as isentropic tables to be able to solve these problems effectively. And

for those who have not really undergone a course in gas dynamics, I would suggest that you

go through a book on gas dynamics and see how you can solve flow across oblique and

normal shocks.  Let  us  now take  a  look at  the  next  problem that  we have it  is  a  nozzle

problem. We will first take up a problem on a convergent nozzle. Subsequently, we will take

up a problem for a supersonic nozzle or a convergent-divergent nozzle.
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So, the first problem on the nozzle that we have is a convergent nozzle which states that air

enters a converging duct with a varying flow area and the temperature at the inlet of the duct

is static temperature is 400 Kelvin and static pressure is 100 kilo pascal and there is the inlet

Mach number which is given as 0.3. So, if we assume steady isentropic flow, determine the

exit static temperature and pressure as well as the Mach number at a location, where the flow

area has been reduced by 20 percent. So, it is given that as the flow exceeds the nozzle, the

flow area has been reduced by 20 percent; that is, area at the exit of the nozzle is 80 percent

the area at the inlet.
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So, this is the problem statement. We have a convergent nozzle, inlet static temperature, static

pressure and the Mach number are specified and the exit area is given as 0.8 times the inlet

area. We are required to find out the exit static temperature pressure and the Mach number.

(Refer Slide Time: 36:30)

So, as I said, we will again need the  tables the isentropic tables to be able to solve these

problems.  You can  also  use  the  equations  as  we have  discussed  in  the  first  problem on

diffusers. But the tables would make it much more convenient and quicker to solve such

problems. So, from the isentropic tables for a Mach number of 0.3, you will see that the area

ratio that is A 1 by A star, where A star corresponds to the throat area is 2.0351. We can also

see from the isentropic tables, the temperature ratio T 1 by T naught as 0.9823 and P 1 by P

naught as 0.9395. So, it is given to us that at the exit of this nozzle, area has been reduced by

20 percent. 

So, A 2 which is the nozzle exit area is 0.8 times A 1. So, we know that A 2 by A star can be

written as A 2 by A 1 multiplied by A 1 by A star. A 2 by A 1 is known; it is given a 0.8 and A

1 by A star we have just now calculated from determine from the isentropic tables as 2.0351.

So, if we multiply these, 2 we get A 2 by A star; that is 1.6281. So, if we now have to

calculate what are the exit conditions, we can see that for this value of area ratio which again

go back to the isentropic tables and then look for this area ratio. 

For this area ratio of 1.6281, the corresponding temperature and pressure ratios are T 2 by T

naught as 0.9701; P 2 by P naught as 0.8993 and the corresponding Mach number as 0.391.

So, we have already determined the exit Mach number; that is 0.391. You can immediately



see that inlet Mach number was 0.3. With a 20 percent reduction area for a subsonic nozzle,

we get an exit Mach number of 0.391. So, there is an acceleration of flow in this nozzle

where the area has been reduced by 20 percent. Now, let us now calculate the exit static

temperature and static pressure.
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So, T 2 by T 1 is can be this  ratio temperature ratio can be rewritten as T 2 by T naught

divided by T 1 by T naught or static temperature T 2 is T 1 multiplied by T 2 by T naught

divided by T 1 by T naught. We have already calculated these ratios T 2 by T naught and T 1

by T naught. (Refer Slide Time: 36:30) T 1 by T naught is  9 0.9823. T 2 by T naught is

0.9701. So, we get an inlet temperature is already given as 400 Kelvin. So, 400 multiplied by

these temperature ratios 0.9701 divided by 0.9823. So, exit static temperature is 395 Kelvin.

Similarly, exit static pressure can be calculated from the pressure ratios. P 2 is equal to P 1

into P 2 by P naught divided by P 1 by P naught, which is 100 multiplied by P 2 by P naught

is 0.8993 and P 1 by P naught is 0.9395. 

So, if we substitute these pressure ratios and temperature ratios, we can calculate the exit

static pressure as 95.7 kilo pascal. So, you can see immediately that at the exit of the nozzle,

these static pressure and static temperature are lower than the inlet static pressure and inlet

static  temperature.  Inlet  static  temperature  was  400 Kelvin  that  has  now reduced to  395

Kelvin.  Similarly, inlet  static  pressure  was  100 kilo  pascal.  At  the  exit  of  the  nozzle,  it

becomes 95.7 kilo pascal. This is accompanied by a corresponding increase in Mach number.

So, if we do not assume any losses in the nozzle, this drop in static pressure is basically the



reason why we have an increase in Mach number; that is the stagnation parameters will be

conserved. 

Stagnation pressure at the inlet and exit will remain the same, if there are no pressure losses.

And if it  is in adiabatic flow, the  static the stagnation temperature also remains the same

between the inlet and the exit. But ofcourse there is a change in static temperature; there is a

drop in static temperature from the inlet to the exit. Correspondingly, there is a drop in static

pressure as well between the inlet of the nozzle and the exit of the nozzle. So, this problem

that we have solved right now is a very simple problem that pertains to a converging nozzle.

We will now take up a converging-diverging nozzle, which is basically the nozzle that one

would use to  accelerate  to  supersonic speeds;  because a  converging nozzle  cannot  really

accelerate to supersonic speeds. 

The  max the maximum speed that you can attain there is Mach 1. And so if we have to

accelerate to a speed beyond that, we will need an area which is expanding or an increase in

area after the throat of a converging nozzle; So that, the Mach number can now increase;

because we have already discussed the  principle  behind this.  That  is  in  supersonic  flow,

acceleration can take place only with an increase in area and therefore, we need a converging-

diverging nozzle to be able to accelerate the flow to supersonic speeds. So, the next problem

that  we will  solve  is  for  a  nozzle  which  is  a  converging  diverging  nozzle  and  it  has  a

supersonic Mach number at its exit. So, let us see what the problem is.

(Refer Slide Time: 42:29)



Air enters a converging-diverging nozzle as shown in the figure. So, that we will explain

what is shown there at a Mach number at a inlet pressure of 1 Mega pascal and temperature

of 800 Kelvin with a negligible velocity. For an exit Mach number of 2, Mach number at the

exit is 2 and the throat area of 20 centimeter square, determine the throat conditions; part b,

the exit plane conditions including the exit area and part c, the mass flow rate through the

nozzle.  So,  in  this  problem,  we have a  converging-diverging nozzle.  Inlet  conditions  are

given; the stagnation pressure and temperature are given. 

We can assume the pressure and temperature to be stagnation; because it is mentioned that the

velocity is negligible. It is also given that the throat area has a certain dimension. It is 20

centimeter square and if the exit Mach number has to be 2 Mach 2, then we are required to

find out different conditions at the throat, at the exit, like the throat area etcetera. So, we will

first take a look at the problem statement itself in terms of an illustration and then we will see

how we can solve this problem based on what we have discussed in the last few lectures.

(Refer Slide Time: 43:50)

So, this is the nozzle a convergent divergent an illustration of a convergent-divergent nozzle.

Inlet conditions are temperature of 800 Kelvin; pressure, 1 mega pascal; velocity is 0; throat

area is given as 20 centimeter square and Mach number at the exit is given as Mach 2. (Refer

Slide  Time:  42:29)  We are  required  to  find  throat  conditions,  the  exit  plane  conditions

including the area and also the mass flow rate through the nozzle. So, let us take up the

problem one by one. We will solve the problem for the throat conditions first; then the exit

conditions and subsequently the Mach number.
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So, the nozzle exit area we have nozzle exit Mach number is given as Mach 2. So, if the

Mach number at the exit is 2, then at the throat the Mach number has to be 1; because in a

convergent-divergent nozzle, the flow accelerates to supersonic speeds only when it reaches

Mach number of 1 at the throat of the nozzle. So, the throat Mach number would be 1. So,

inlet  velocity  is  given  as  negligible.  So,  inlet  stagnation  pressure  and  the  stagnation

temperature are same as that of a static and stagnation condition. So, we have P naught which

is stagnation pressure as 1 mega pascal and temperature as 800 Kelvin. Therefore, density at

the inlet is 4.355 kilo grams per meter cube; that is pressure divided by P by R T. We get the

density that is 4.355 kg per kilo grams per meter cube.
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Part a of the question is to find the conditions at the throat. Since at the throat we know Mach

number is 1, from the isentropic tables we can calculate the corresponding temperature and

pressure ratios. P star by P naught is will be for Mach number of 1 would be 0.5283. T star by

T naught is 0.8333 and rho star by rho naught the density ratio is 0.6339. So, this you can see

from an any isentropic tables for a Mach number of 1,  this these ratios can be easily found

out. Therefore, the pressure at the throat P star would be 0.5283 multiplied by the pressure at

the inlet P naught. So, that is 0.5283 mega pascal. 

Temperature is 0.8333 times T naught which is 666.6 Kelvin and density is 0.6339 times the

inlet density that is 2.7 61 kilo grams per meter cube. So, we can also calculate the velocity at

the throat; because Mach number is 1. Velocity of the throat will basically be equal to the

speed of sound at the throat; that is square root of gamma R T, where T is equal to T star. And

so if you substitute for gamma R and T star which you have calculated, we can calculate the

velocity of the throat as 517.5 meters per second. So, this is the velocity of the throat which is

also the speed of sound at the throat; because Mach number is 1.
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Second part of the question is to find out the conditions at the exit of the nozzle including the

nozzle exit area. Mach number at the exit is given as Mach 2. Again from the isentropic

tables for Mach number of 2, we can calculate the pressure and temperature ratios which

would be P e by P naught as would be given as 0.1278. T e by T naught is 0.5556 and density

ratio rho e by rho naught is 0.23. So, from the shock table well the isentropic tables, you will

also be seeing the critical Mach number there as M star which is 1.6333 and also the area

ratio A e by A star as 1.6875. So, in a rho, you would find all these parameters which have

been specified.

Now, the since we are not assuming any losses; it is not mentioned that there are any losses in

stagnation pressure, we will assume that the inlet stagnation pressure is valid even at the exit.

So, and ofcourse there are no shocks present in the divergent portion of the nozzle. So, inlet

stagnation  pressure  is  still  the  same.  So,  exit  pressure  P e  is  equal  to  0.1278 times  the

stagnation pressure, which is 1 mega pascal and therefore, P e is 0.1278 mega mega pascal. T

e is 0.5556 multiplied by stagnation temperature and that is 0. multiplied by the temperature

which comes out to be 444.5 Kelvin. Similarly, the density rho e is 1.002 kilograms per meter

cube. Now, A e by A star the ratio has been specified in the problem. So, we find the A e the

exit area is 1.6875 multiplied by A star, which is 33.75 centimeter square; because A star is

given as a 20 centimeter square.
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So, we can also calculate the exit velocity which is Mach number time square root of gamma

R T. Mach number is given as 2. So, square root of gamma R T multiplied by the Mach

number, we get the exit velocity as 845.2 meters per second. We now have to calculate the

mass flow rate. So, mass flow rate can be calculated based on the throat; because the flow is

chocked. So, we know the parameters at the throat. We can also calculate this based on the

exit conditions; because we know the velocity, density and area at the exit. Either way, we

calculate the mass flow rate comes out to be the same; it is 2.86 kilo grams per second. 

So, this is basically the chocking mass flow; that is a maximum mass flow which the nozzle

can handle; because it is chocked at the throat of the nozzle. So, we have now solved four

different problems; two of them pertaining to intakes. One was a subsonic intake; the other

was a  supersonic intake which involved two oblique shocks in  a  normal  shock.  We also

solved two problems pertaining to nozzles; a subsonic nozzle a converging nozzle and also a

converging-diverging nozzle. So, I have a few exercise problems for you based on diffusers

or intakes and nozzles, which you can solve based on what we have discussed today and also

our discussion in the last few lectures.
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So, the first exercise problem is on a subsonic intake. Turbofan engine ingests air at 500

kilograms per second through an inlet area of 3 meter square. If the ambient conditions are

288 Kelvin and 1 kilo pascal, calculate the Mach number when the capture area will be equal

to the inlet area. So, when capture area is equal to the inlet area, what is the corresponding

Mach number? So, this is the first problem which is very similar to what we have solved in

today’s class; the first exercise; first tutorial problem we had solved.
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The second question is an aircraft flies at a Mach number of 2.4 at an altitude, where the

ambient conditions are 70 kilo pascal and 260 Kelvin. The aircraft has a two-dimensional

intake with a wedge angle of 10 degrees. If the axis of the intake and hence the wedge is

tilted by 25 degrees with respect to the upstream air flow, determine the downstream Mach

number, pressure, temperature as compared to the  wedge above the wedge. So, this is an

intake which has an half angle of 10 degrees and if this is tilted by 25 tilted to 25 degrees, for

the  same  Mach  number  you  are  required  to  calculate  the  corresponding  conditions

downstream of the wedge. So, answer to this question would be 3.105; the pressure is 23.8

kilo pascal and temperature is 191 Kelvin.
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Third question is on a subsonic nozzle. Air enters a nozzle at 0.2 mega pascal, 350 Kelvin and

a velocity of 150 meters per second. Assuming isentropic flow, determine the pressure and

temperature of air at a location, where the air velocity equals the speed of sound. What is the

ratio  of  the  area  at  this  location  to  the  entrance area? So,  we need to  find pressure and

temperature, when the velocity is equal to speed of sound; that is it is chocking. So, that

condition, the pressure would be 0.118 mega pascal; temperature is 301 Kelvin and the ratio

of the area at this location; ratio of area at the throat to the entrance area is 0.629.
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The  fourth  problem is  a  converging-diverging  nozzle.  Air  enters  a  converging-diverging

nozzle  at  0.5  mega  pascal  with  negligible  velocity. Assuming  the  flow to  be  isentropic,

determine the back pressure that will result in an exit Mach number of 1.8. So, you need to

find out what is the exit pressure for which the exit Mach number becomes 1.8. So, the exit

Mach number exit back pressure should be 0.087 mega pascal. So, we will need to use the

shock table or isentropic tables to be able to solve some of these problems.
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And the last problem is air enters a converging-diverging nozzle of a supersonic wind tunnel

at 1.5 mega pascal and 350 Kelvin with a low velocity. If a normal shock wave occurs at the

exit plane of the nozzle at Mach number of 2, determine the pressure, temperature, Mach

number, velocity and stagnation pressure after the shock wave. So, in this question there is a

shock a  normal  shock  in  the  divergent  section  of  the  nozzle,  we  need  to  find  out  the

conditions after the shock wave. The pressure is 0.863 mega pascal; temperature would be

328 Kelvin; the Mach number is 0.577; velocity is 210 meters per second and the stagnation

pressure is 1.081 mega pascal. So, these are a few exercise problems that you can solve. I

would assume that you can solve these problems based on what we have discussed today. 

And as I said, you will need both the isentropic tables as well as the shock tables to be able to

solve these questions. Not just for the tutorial which we have solved, you will also need them

for the exercise problems that I have listed for you. So, that brings us an end to an end to this

tutorial  which  was on intakes  and nozzles.  We will  then  in  the  next  lecture,  we will  be

discussing about some of the some different aspects of air breathing engines, which pertain to

ram jets and pulse jets. So, we will take up a discussion on some of these new concepts in the

next lecture. And so, we are winding up our chapter on intakes and nozzles with this tutorial.

And I hope based on our discussion during the lecture as well as during today’s tutorial, you

would be able to appreciate and solve problems pertaining to some of these topics.


