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Hello and welcome to lecture number 22 of this lecture series on introduction to 

aerospace propulsion. Over the last several lectures, we have got introduced to several 

aspects of thermodynamics, thermodynamic principles, and also laws of 

thermodynamics, and how to use them in applications like in thermodynamic cycle 

analysis and so on. What we are going to discuss today is a little bit different from what 

we have been discussing so far - in the sense that, this particular topic that we are going 

to take up for discussion today and also in the next lecture combines some of the 

thermodynamics principles with fluid mechanics in some sense. What we are going to 

discuss about is on compressible flows and what are the different properties of 

compressible flows. We shall look at compressible flow through some simple cross-

sectional geometries like convergent nozzles and converging diverging nozzles, and so 

on. 
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This is a slightly different topic from what we have discussed so far. This is going to also 

use many of the thermodynamic principles that we have been discussing in the last few 

lectures. What we shall discuss in today’s lecture are the following: we will begin our 

talk today with discussion on what do you mean by one-dimensional compressible flows. 

We shall talk about stagnation properties and then we shall talk about speed of sound and 

Mach number; how do you define Mach number and then we shall look at one-

dimensional isentropic flow and variation of fluid velocity with flow area. We will 

derive an equation which defines or governs the variation of the fluid velocity with area. 

We will also be discussing towards the end of the lecture on isentropic flow through 

nozzles. We will discuss two types of nozzles: converging nozzles and converging 

diverging nozzles. These are some of the topics that we shall be discussing in today’s 

lecture. You might have got a feeling right now that this is going to be a discussion 

primarily on compressible flows and also on their significance in terms of analysis of 

compressible flows. 

During our thermodynamic analysis that we have discussed and also we have solved 

several problems using the thermodynamic principles, we have always made an inherent 

assumption that at a given state of a system, the density is a constant. So, there is an 

inherent assumption that the flow is incompressible in the sense that we do not really 

consider variations of density which is not necessarily true in many of the engineering 



applications. In most of the day-to-day applications that we are familiar with, the 

velocities of the fluid are very low and therefore the inaccuracy that we achieve because 

of assuming incompressible flow is not really high. Whereas, if fluid velocities are very 

high, then it is not really possible for us to make this assumption that the flow is 

incompressible. The flow no longer remains incompressible. Therefore, we should be 

taking into account the compressibility effects and that is one of the aspects or that is one 

of the reasons why we are taking up this topic for discussion today. There are a lot of 

engineering applications where the fluid velocities can be significantly high. Therefore, 

we cannot really assume that the flow is incompressible, changes in density are 

incompressible or changes in kinetic energy are incompressible for that matter. 

What we shall discuss to begin with is that the significance of the compressible flows. 

Why do we need to discuss them? Basically, there are certain applications where it is 

important for us to understand or analyze the system in the form of considering the 

variations in density and also taking into account the variations or effect of kinetic 

energy; though potential energy may still be negligible, kinetic energy cannot be 

neglected. 
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So, the flows that basically involve significant density variations are known as 

compressible flows. Though, most of the analysis we have considered so far neglected 

density variations, we shall also take a look at some applications where this effect can no 



longer will be neglected. We shall be making an assumption here that even when we 

consider the flow to be compressible, we shall be analyzing it in a one dimensional sense 

for an ideal gas with constant specific heat. We are going to assume that the specific heat 

is a constant and the gas is ideal. Therefore, we can assume the ideal gas behavior and so 

on and. Where do we see such applications? In devices that involve flow of gases at very 

high velocities like in nozzles and so on. It is important that we have an understanding of 

how to analyze such systems which involve very high velocities. Therefore, changes in 

kinetic energies can no longer be neglected. 
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In order that we analyze a system where kinetic energy cannot be neglected, we need to 

define what is known as stagnation property of a system or different types of stagnation 

properties. One of the stagnation properties to begin with, we shall understand is the 

stagnation enthalpy. We have already defined what is enthalpy. We know now that 

enthalpy represents the total energy of a fluid in the absence of potential and kinetic 

energy. This comes from the first law of thermodynamics. When we take up this 

property of enthalpy at high speed flows, potential energy being negligible may still be 

valid, but not kinetic energy. So, we have to take into account, the changes in kinetic 

energy. 

What we do is, we combine enthalpy with kinetic energy; that is we add up enthalpy and 

part of the kinetic energy and we define a new property known as the stagnation 



enthalpy. Why it is known as stagnation enthalpy will be clear when we discuss further. 

This, so called static enthalpy, which I will now be referring to as static enthalpy and the 

kinetic energy term put together is known as the stagnation enthalpy. If you look at the 

definition of stagnation enthalpy which I had defined, stagnation enthalpy which is 

usually denoted by h subscript 0, 0 is applicable for most of these stagnation properties 

which we are going to define like temperature pressure and so on. 

Stagnation enthalpy, h naught is equal to h which is now the static enthalpy plus V 

square by 2, which is the kinetic energy. You might notice that these are all per unit mass 

and therefore, its specific stagnation enthalpy is the sum of the specific static enthalpy 

plus V square by 2. So, the first term on the right hand side is the static enthalpy which 

does not have a subscript 0 and the second term is the kinetic energy term. 

On the left hand side, we have the stagnation enthalpy. This is how you would define a 

stagnation enthalpy which is primarily the sum of enthalpy as we had defined earlier, 

which we are now calling as the static enthalpy. Whenever we take up different 

properties at high speed cases - that is incompressible flows, we also define these 

properties as stagnation as well as static parameters. So, static parameter will become 

stagnation parameter if the velocities are 0 - that is if kinetic energy is 0, then, static and 

the stagnation properties are the same. 
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We will now use this principle to define other properties in terms of stagnation 

parameters like stagnation pressure and stagnation temperature, stagnation density and so 

on. If you consider a steady flow through a duct, let us say, through some diffuser or a 

nozzle where there is no shaft work; there is no heat transfer etcetera. Steady flow energy 

equation for this is something you have already defined - that is h 1 plus V 1 square by 2 

is equal to h 2 plus V 2 square by 2. The left hand side as we have not defined is the 

stagnation enthalpy at state 1, which is at 01. On the right hand side, we have stagnation 

enthalpy at state 2 - that is h 02. This means that in the absence of any heat and work 

interactions, if there are no heat transfers or there are no work interactions, the stagnation 

enthalpy remains a constant during a steady flow process. 

This is a very significant property that we need to keep in mind that if there are no heat 

interactions or there are no work interactions in a steady flow process, then this 

stagnation enthalpy of such a process remains the same. It does not change. If there are 

no heat transfers into the system or from the system, stagnation enthalpy does not 

change. That is something we have to keep in mind; because many of the systems that 

we are going to consider will have this property to be used - that there is no heat and 

work interactions taking place like in nozzles and diffusers. Therefore, stagnation 

enthalpy has to be a constant; but this is not applicable for systems like turbines or 

compressors, because there is a work interaction taking place in the case of compressor -

work done on the system in the case of turbine, work done by the system. So, stagnation 

enthalpy obviously will not be a constant in such cases; it is only applicable for those 

cases where there are no work or heat interactions. 

We have now seen that if you look at this duct example that I was mentioning, where we 

had - h 1 plus V 1 square by 2 is equal to h 2 plus V 2 square by 2. Let us say that at state 

2, the velocity is now equal to 0. That is, by some means, we bring the velocity at state 2 

to be 0. Now, what we have is h 1 plus V 1 square by 2 is equal to h 2 which is also 

equal to h 02; because as we have discussed, if velocity is 0, static and stagnation 

parameters are the same; which means that - at state 2, the static enthalpy and stagnation 

enthalpy are the same. So, what does it mean is that stagnation enthalpy also represents 

the case where the fluid velocity is isentropically or adiabatically brought to rest. 
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So, at state 2, if you were to bring the fluid to rest, we have - h 1 plus V 1 square by 2 is 

equal to h 2 which is also equal to h 02, which means that stagnation enthalpy represents 

enthalpy of a fluid when it is brought to rest adiabatically. That is because in this case, 

there was no heat interaction or work interaction across the system boundaries. If you 

bring the fluid to rest adiabatically and in which case stagnation enthalpy basically 

represents the enthalpy of a fluid when it is brought to rest adiabatically. What happens 

during this stagnation process? This is why, it is basically called stagnation enthalpy. The 

term stagnation comes because we are assuming that the fluid is adiabatically coming to 

rest. That is how, the term stagnation enthalpy arise. 

During a stagnation process, kinetic energy of a fluid is converted to enthalpy - that is 

internal energy and flow energy, which results in increase in the fluid temperature and 

pressure. If you were to bring a fluid to rest adiabatically, as part of conservation of 

energy principle, that energy has to get transformed into some other form. What happens 

is, the fluid energy increases in the form of flow energy and so on so that ultimately 

leads to an increase in temperature and pressure of the fluid. 

Based on this, we shall now define what are known as stagnation pressure and stagnation 

temperature. On the left hand side, if you recall we had - 1 plus V 1 square by 2 which 

was equal to h 2 and in turn equal to h 02. In general, we can write h naught, stagnation 

enthalpy is equal to h plus V square by 2, which means that for an ideal gas, which is 



where we began our discussion that we are going to assume that the gas is going to be 

ideal with constant specific heats. 

So, with constant specific heats for an ideal gas, enthalpy is simply equal to c p times T. 

Therefore, we have c p T naught is equal to c p T plus V square by 2 or T naught is equal 

to T plus V square by 2c p. Left hand side, we have a temperature with a subscript 0 that 

is known as the stagnation temperature. Stagnation temperature is equal to the sum of the 

static temperature plus - one term which we are going to define as the dynamic 

temperature - because that changes with fluid velocity and that is why it is called 

dynamic temperature. 
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If you write the equation for enthalpy in the form of product of specific heat at constant 

pressure to the temperature, then, we have - c p T naught is equal to c p T plus V square 

by 2 or T naught is equal to T plus V square by 2c p. Here, T naught is defined as the 

stagnation temperature and this represents the temperature an ideal gas will attain, if it is 

brought to rest adiabatically. That is similar to what we did for enthalpy. If you bring a 

gas to rest adiabatically, the temperature that the gas attains at the end of this process -

that is when it comes to rest adiabatically, is known as the stagnation temperature. The 

second term, that is - V square by 2c p corresponds to the temperature during such a 

process and because it can change with velocity, it is called dynamic temperature. 



You can immediately see that for non-zero velocities, stagnation temperature will always 

be greater than the static temperature which is something we have defined earlier as well. 

That is, as you bring a fluid to rest, the energy gets transformed into internal energy and 

so on, which ultimately leads to an increase in temperature and pressure, which we have 

now defined as stagnation temperature and pressure. This has to be higher than the static 

temperature; because, it has an additional energy term which is the dynamic temperature 

term. Similarly, we can also define pressure - that is stagnation pressure which is the sum 

of the static pressure plus the dynamic pressure. Stagnation pressure is equal to P naught 

is equal to P plus half rho V square. I guess you might have learned this in fluid 

mechanics and this was basically as part of the Bernoulli equation. We can immediately 

see that there is a direct correlation between what you get in thermodynamics with what 

you feel or what you get in fluid mechanics. 
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Stagnation pressure is equal to static pressure plus this dynamic pressure. What we are 

trying to say here is that - there are parameters which we need to take into account when 

the fluid velocities cannot be neglected. So, kinetic energy needs to be accounted for in 

calculating parameters. Similarly, the way we have defined for temperature, we can also 

define stagnation pressure. The pressure that a fluid will attain when it is brought to rest 

isentropically is known as the stagnation pressure. What we are saying here is that - all 

these stagnation parameters whether it is temperature or pressure or enthalpy will have a 

value greater than that of the corresponding static parameters for all non-zero velocities. 



From the ideal gas, we have already assumed that all these cases that we are discussing 

about will be for ideal gas. So, from the isentropic relations that we had discussed, we 

can relate the stagnation pressure to the stagnation temperature in terms of the pressure 

and temperature ratios. If you were to relate the pressure ratios to the temperature ratios, 

we have P naught by P is equal to T naught by T raise to gamma by gamma minus 1, 

where gamma is the ratio of specific heat which is equal to c p by c v. 

Similarly, we can define it for density which is rho naught by rho is equal to T naught by 

T raise to 1 by gamma minus 1. Again, gamma is equal to the ratio of specific heats. So, 

these are isentropic relations which we will be using very frequently in our 

thermodynamic analysis of different cycles. Some of them which we have already 

discussed was not in the form of the ratio of stagnation and temperatures and pressures; 

but in the form of static pressures and temperature ratios. In some of the later analysis, 

we will be doing for aircraft engines where the kinetic energy terms cannot be neglected. 

These equations will be used very frequently. 

Now, what we shall do now is to see what happens if there is a change in - let us say, the 

stagnation pressure. Stagnation pressure, we have already seen that stagnation enthalpy 

does not change as long as there are no heat transfer or work transfer across the system 

boundaries which means that since stagnation temperature is directly related to 

stagnation enthalpy, this also is applicable to the stagnation temperature. Therefore, 

stagnation temperature also does not change as long as there are no heat and work 

interactions across the system boundaries. But it is applicable for pressure, because 

pressure is a parameter for ideal gases. It is not directly related to the enthalpy; it is the 

temperature which happens to be related to enthalpy. So, what about pressure? 
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To understand that, what we will do is to look at a process where we could have a loss in 

total pressure and we will see what correspondingly happens to the enthalpy. What we 

have done here is that on an enthalpy entropy scale, we have h and s scale here. This is 

let us say, a compression process, where there is an increase in pressure or even if there 

is no compression, let us look at fluid which is just a having a certain velocity which 

means that it will have stagnation parameters which will have to be accounted for. This 

is basically, the sum of the static parameters plus the dynamic term. So, the actual state 

of the fluid is represented here at state 1, which is shown there. This is the initial state 

where it has a certain enthalpy, h correspondingly there is an entropy as well. This is on a 

constant pressure line. So, this pressure line that is seen here is P; it is a constant pressure 

line. What are the corresponding parameters for this particular fluid, if you were to look 

at the stagnation parameters? 

We know that stagnation enthalpy - h naught is equal to h plus V square by 2. We have h 

naught which is equal to h plus -this dynamic term, that is -V square by 2. This is the 

isentropic stagnation state.; that is, if the process were to be isentropic, then, we get this 

straight line. Because entropy is a constant; it is a straight line. It is an isentropic 

stagnation state; where the enthalpy at the end of this process is equal to h naught and the 

corresponding stagnation pressure is equal to P 0 or P naught. If the process is not 

isentropic, that is - if you look at a process which has frictional losses and some such 

irreversibilities, it cannot be any more isentropic. 



So, if you look at an actual stagnation state, there has to be an increase in entropy. There 

will be a certain positive slope for that particular process. There are no heat or work 

interactions, which means that the enthalpy should not change; because there are no heat 

or work interactions which are taking place. Therefore, enthalpy cannot change in such a 

process. Because of irreversibilities, it is non-isentropic and there will also be some 

pressure loss because of irreversibilities. 

If there is a pressure loss, then, we have a certain slope for the process. We have on the 

same enthalpy line; because, enthalpy does not change, stagnation enthalpy line 

extended, the process ultimately meets the stagnation enthalpy line and the 

corresponding pressure is the actual total pressure. So, P naught actual need not be equal 

to P naught isentropic, because there could be a pressure loss - total pressure loss - taking 

place because of -let us say- friction. Friction can cause decrease in velocities which 

means that at the end of the process, you have a lower velocity and correspondingly - a 

lower total pressure. Therefore, P naught actual can be less than the P naught ideal or P 

naught isentropic. So, it is not necessary that the total pressure remains the same at the 

end of such a process. What should remain the same is the enthalpy.Enthalpy does not 

change because there are no heat or work interactions taking place. 

This is a very important aspect that we need to keep in mind. In a process, where there 

are no heat or work interactions, the stagnation enthalpy cannot change. Therefore, 

stagnation temperature also does not change. What is possible is that there could be a 

difference between the stagnation pressure, ideal or isentropic to the stagnation pressure 

actual - which could be because of frictional losses, which could lead to non-isentropic 

processes. There could be P naught actual which is less than P naught ideal. In the ideal 

case, if we assume all irreversibilities to be 0, then P naught actual will be equal to P 

naught ideal, because there are no more pressure losses. 

So, this is a very important aspect that you definitely need to keep in mind. We will keep 

using this aspect in many of the analysis that we are going to do in some of the later 

lectures when we analyze ideal cycles and real cycles of gas turbine engines. What we 

have discussed now are on stagnation parameter, stagnation enthalpy, stagnation 

pressure, stagnation temperature, density and so on. The bottom line is that - in the 

absence of heat and work interactions, stagnation enthalpy and stagnation temperature 



cannot change, but what is possible is that you may have a change in stagnation pressure 

due to some irreversibility and non-isentropicity of the process. 
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What we shall discuss now is a different aspect related to compressible flows. We will be 

defining what is known as the Mach number. Before we define that, we need to define 

what is meant by speed of sound. Speed of sound is the speed at which an infinitesimally 

small pressure wave travels through a medium. Sound is a pressure wave, a small 

pressure wave. Speed at which the infinitesimally small pressure wave travels through a 

medium is basically the speed of sound. 
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If you assume an ideal gas, speed of sound which is usually denoted by symbol c, c can 

be shown to be equal to square root of gamma RT - where gamma is the ratio specific 

heats. R is the gas constant for the medium and T is the temperature, static temperature. 

So, c is a direct function of temperature. Speed of sound is a direct function of 

temperature and it also depends upon the ratio of specific heats and the gas constant. For 

a particular medium, both of these are constant as long as we assume that ratio of 

specific heat does not change with temperature. We can see that speed of sound is a 

direct function of the static temperature. Based on this, we are going to define a non-

dimensional parameter, which is - taking the ratio of the velocity of fluid or the object to 

the speed of sound and that is known as the Mach number. So, Mach number is the ratio 

of the actual velocity of an object or fluid to the speed of sound. In some cases, the fluid 

may be moving and the object is stationary which is what we would do in internal 

testing. For example, the fluid is at a certain speed; the object is stationary, whereas, on 

the other hand, an actual aircraft moves at a certain speed in a medium where the air is 

relatively at zero velocity. 

So, ratio of that speed to the speed of sound is known as the Mach number. Mach 

number is defined as V by c, where V is the velocity of the object or fluid and c is the 

speed of sound which is equal square root of gamma RT. So, Mach number is a function 

of the ambient temperature as we have seen, which means that it is possible that an 

object which is moving at the same velocity in two different mediums of two different 



temperatures will have different Mach numbers. Even though their velocities are same, 

they are in different mediums which have different temperatures, which means that the 

speed of sound will be different for different mediums depending upon their temperature. 

Therefore, it is perfectly possible that Mach number of two objects which are moving 

with the same velocity but in different mediums which have different temperatures, the 

Mach number can certainly be different. It is not necessary that if the velocity is same, 

Mach number has to be the same. 

Depending upon Mach number, if we have a case where Mach number is equal to 1, then 

such flows are known as sonic flows. If Mach number is greater than 1, the flow is 

known as a supersonic flow. If the Mach number is less than 1, it is called a subsonic 

flow. If Mach number is greater than 5, we refer to such flows as hyper sonic flows. 

Mach number approximately equal to 1 or around 1, then, we call such flows as transonic 

flows. 
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These are different terms we use for flows depending upon their Mach numbers. Mach 

number less than 1 is subsonic; greater than 1 is supersonic and greater than 5 is usually 

referred to as hypersonic and so on. So, what we will do now is to look at the variation of 

fluid velocity with the area and will derive an expression which relates the area ratios 

and fluid velocity with the Mach number, which means that for different Mach numbers, 

we can see how area and velocities are related. 



For deriving an expression, what we will do is consider a mass balance for a steady flow 

process. We know that mass flow rate for such processes are equal to the product of 

density, area and velocity. So, rho AV which will be a constant for a steady flow process. 

If you differentiate this equation and divide this by the resultant mass flow rate, we can 

rewrite the above equation as - d rho by rho plus dA by A plus dV by V is equal to 0. 

Now, from our steady flow energy equation which we had derived in earlier lectures, if 

you assume work done, heat transfer, kinetic and potential energy to be more or less 0, 

then, from the steady flow energy equation, we get - h plus V square by 2 is equal to 0 or 

dh plus VdV is equal to 0. That is, if you differentiate this equation equation, we get dh 

plus VdV is equal to 0. 
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This is coming from the steady flow energy equation, where we assume work done, heat 

transfer and potential energy to be 0. From the Tds equation, that was the second Gibb’s 

equation - Tds equal to dh minus vdP. Now, for isentropic flows, Tds will be equal to 0. 

Therefore, dh is equal to vdP - which is dP by rho, because specific volume is the inverse 

of density and therefore, dh is equal dP by rho. 

Therefore, our previous equation which was - dh plus VdV is equal to 0 becomes dP by 

rho plus VdV is equal to 0. If we combine this equation with the mass balance equation, 

we get - dA by A is equal to dP by rho multiplied by 1 by V square minus d rho by dp. It 

is also known that the ratio, d rho by dP for constant entropy is equal to 1 by c square. If 



you were to apply this principle, we get dA by a is equal dP by rho V square into 1 minus 

M square. 
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So, M square is coming because we will get a ratio of V square by c square which is 

equal to Mach number square. From the mass balance equation, we get - dA by A plus 

dP by rho V square into 1 minus M square. This again, we can rearrange based on our 

earlier equation. If you rearrange that equation, from dP by rho is equal to minus VdV, 

we get dA by A is equal to minus dV by V into 1 minus M square. This equation has a 

lot of significance in the sense that this equation governs the shape of a nozzle or a 

diffuser in subsonic or supersonic isentropic flows. 

In this equation, area and velocity are positive quantities. If that is so, depending upon 

the Mach number whether it is greater than 1 or less than 1, area velocity changes can be 

inferred. That is, for subsonic flows where Mach number is less than 1, we have dA by 

dV less than 0. For supersonic flows, where Mach number is greater than 1, the rate of 

change of area with velocity is greater than 0 and for sonic flows where Mach number is 

equal to 1, then we have dA by dV is equal to 0. We will try to understand - what is the 

implication of the rate of change of area with velocity depending upon the Mach number. 

As Mach number changes, there are changes in velocities with reference to changes in 

areas. 
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Let us look at what happens as you change the Mach number and what happens to 

velocity as you change areas. From these equations, it follows that to accelerate a fluid in 

subsonic flows, you need a converging area - there has to be a decrease in area; because 

for Mach numbers less than 1, dA by dV is less than 0 - which means that if you have to 

accelerate a flow, we have to have a corresponding decrease in area in subsonic flows; 

whereas, in supersonic flows, you will need an increase in area to accelerate fluid. A 

diverging nozzle is required at supersonic velocities. What we will also see a little later is 

that the highest velocity that you can achieve in a converging nozzle is the sonic 

velocity. The maximum velocity that you would be able to achieve in a converging 

passage in subsonic flows will be that you would get only a sonic velocity at the end of 

the converging nozzle. 
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To accelerate a fluid to supersonic velocities, you will need a diverging section or 

diverging area or increase in area after the flow reaches a sonic velocity at the minimum 

area, which is known as the throat. After the throughout, there needs to be a diverging 

section to accelerate a fluid to supersonic velocities. What I was trying to say is that in 

subsonic flows, if you look at Mach numbers less than 1, as you start accelerating the 

fluid, the maximum velocity or Mach number that you can get at the end of the 

acceleration is Mach number equal to 1. This is known as sonic velocity. 

So, a flow which has certain total pressure and temperature at the inlet of the nozzle -a 

nozzle section is shown here - will accelerate. The maximum that it can accelerate is 

Mach number is equal to 1. What if you reduce the area below this - that is - at the end of 

this nozzle? Let us attach another nozzle hoping that will accelerate it to supersonic 

speeds. That is not going to happen; what will happen is that - the section where you get 

sonic velocity will shift and the section which had sonic velocity earlier will now have a 

subsonic Mach number. 

So, the sonic velocity will occur only at the exit of this converging section instead of the 

exit of the original nozzle. The mass flow rate will now reduce because you are trying to 

force a certain amount of mass flow through a lower passage area. So, you would get a 

decrease in mass flow. 



We will see later that as Mach number reaches 1, the mass flow is at its maximum and 

that is known as the choking of a nozzle. That is, if you were to force fluid through a 

nozzle till a point that at the exit of the nozzle, Mach number is equal to 1. Then, the 

mass flow rate that can be passed through such a nozzle has reached its maximum level - 

that is known as choking of the flow. This means that if you add another convergent 

section to that, you are not going to increase the Mach number any more; it will in fact 

lead in to reduction of the mass flow rate because choking area is different now. So, it is 

not possible for us to achieve supersonic Mach numbers in a converging section. 
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In order to get a supersonic Mach number, we need to have a divergent section at the exit 

of the convergent section. Such nozzles are known as converging diverging nozzles. We 

will do some analysis of the variation in pressure across a converging diverging nozzle 

with change in back pressure. We will do that little later. Now, in summary - from the 

area, velocity Mach number relation what we have are the following: if you look at the 

first case here, we have a nozzle which has an inlet Mach number which is subsonic. 

Along the length of the nozzle, the static pressure and temperature will decrease - the 

velocity at Mach number increases. This is basically a subsonic nozzle. So, area reduces 

Mach number increases in subsonic flow. Reverse of that happens -if the area is 

increasing, Mach number is less than 1 at the inlet; the static pressure and temperature 

increases along the length of the nozzle, velocity and Mach number decreases. This is 

basically a subsonic diffuser. 



If you look at the supersonic version of this, it is the exact opposite. If Mach number at 

the inlet is greater than 1, if you have to have an increase in Mach number along the 

length of the nozzle, area has to increase. So, pressure and temperature decreases; 

velocity and Mach number increases and this is known as a supersonic nozzle. If you 

look at a supersonic diffuser, it has decreasing area, so, pressure and temperature will 

increase and Mach number decreases. So, a supersonic diffuser at least theoretically is a 

subsonic nozzle. Supersonic diffuser will acts as a nozzle in subsonic flow and a 

subsonic diffuser will act as a supersonic nozzle at Mach numbers greater than 1 -which 

is what should happen theoretically. 

What we have discussed now is an outcome of the area, velocity, Mach number relation 

which we had derived. So, we know how the area has to change, given a certain Mach 

number, so that you get an increase or decrease in velocity accordingly. Now, what we 

will do is relate the stagnation properties. -that is stagnation pressure, temperature and 

density to the corresponding static parameters like static temperature, pressure and 

density through the Mach number. 

We have already seen the isentropic relations which relate ratio of temperatures and 

pressures through the ratio of specific heats - that is T naught by T is equal to P naught 

buy P raise to gamma minus 1 by gamma. Now, we will relate the stagnation parameters 

with their corresponding static parameters through the Mach numbers. 
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To do that, we have already seen this equation, which was relating stagnation 

temperature to static temperature and velocity ratios. So, T naught is equal to T plus V 

square by 2c p. Therefore, T naught by T is equal to 1 V square by 2c p T. Since, we 

know that c p is gamma R by gamma minus 1 and c square is gamma RT and also Mach 

number is V by c; if we make these substitutions in the dynamic temperature term, we 

get V square by 2c p T is equal to V square by 2 into gamma R by gamma minus 1 into T 

- which basically is gamma minus 1 by 2 into V square by c square which is - gamma 

minus 1 by 2 M square. So, if you substitute this in the first equation, we get T naught by 

T is 1 plus gamma minus 1 by 2 M square. 
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This relates stagnation temperature to static temperature through the Mach number. This 

can also be extended to the corresponding pressure and density. From the isentropic 

relations, we get P naught by P is 1 plus gamma minus 2 M square raise to gamma P 

gamma minus 1 and stagnation density ratio rho naught by rho is equal to 1 plus gamma 

minus 1 by 2 M square raise to 1 by gamma minus 1. These are property relations which 

relate the stagnation parameters to the static parameters through Mach number. 
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Now, Mach number is equal to 1, we have seen at the end of the nozzle, Mach number is 

equal to 1. If we equate M equal to 1 in those equations, then, the properties that we get 

are known as critical properties and they are denoted by a superscript star. If we equate 

M equal to 1 in them, we get T star by T naught is equal to 2 by gamma plus 1. 

Similarly, P star by P naught is equal to 2 by gamma plus 1 raise to gamma by gamma 

minus 1- rho star by rho naught is equal to 2 by gamma plus 1 raise to 1 by gamma 

minus 1. These are the equations which relate the critical properties to the corresponding 

stagnation properties and you can see that it depends only on the ratio of specific heats. 

This was about property relations for ideal gases; inherently assuming that there is an 

isentropic flow. Now, what we will do next is to analyze isentropic flow through nozzles. 

We will take two different types of nozzles: a converging nozzle and a converging 

diverging nozzle. A converging nozzle in a subsonic flow will have a decreasing area, as 

we have seen. So, let us look at what happens as you keep decreasing the area. If you 

keep the area fixed, as you decrease the exit pressure - that is known as the back 

pressure, how does it affect the flow parameters? 
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A converging isentropic flow through a converging nozzle will involve a decreasing area 

along the flow direction. What we shall do is to consider the effect of back pressure on 

the mass flow rate and pressure distribution along the nozzle. We will assume that the 

flow enters the nozzle from a reservoir where the velocities can be assumed to be 0. So, 

the stagnation temperature and pressure will remain unchanged through the nozzle. We 

will not assume any losses taking place in the nozzle; so that pressure is constant. Since 

there is no heat or work interactions stagnation, temperature also remains a constant. 
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So if that is what the case, this is the nozzle that we are talking about, which has flow 

entering through a reservoir which is at pressure P naught, temperature T naught; exit 

pressure is P e and back pressure is the term which we can change. Depending on the 

back pressure, the pressure across the nozzle also will change. In the first scenario, we 

have back pressure equal to the reservoir pressure. There is no flow taking place. So, the 

variation of pressure ratio is a constant. The pressure would vary in the format shown 

here. 
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Now, as we reduce the back pressure, but back pressure is still greater than the critical 

pressure. Now, there is a decrease in the pressure ratio, P by P naught. This is how the 

variation would be. So, from state 1 to state 2, we have a case where back pressure is still 

greater than the critical pressure. If you reduce it further at state 3, where back pressure 

is equal to the critical pressure, the pressure ratios continue to reduce and reaches state 3, 

let us say. If you were to decrease back pressure below this critical value, what basically 

happens is that there is no change happening; it will continue to have the pressure ratio 

which will continue to drop till the extent that if you reduce the back pressure even 

further, the Mach number at the exit of the nozzle does not change. It will remain the 

same. So, the point - when we have the ratio or back pressure is equal to the critical 

pressure is known as the choked condition or the chocked flow. The pressure ratio at that 

point is P star by P naught. We have seen this depends only on ratio of the specific heats. 



(Refer Slide Time: 47:09) 

 

So, for any other pressures, if you continue to drop the back pressure lower than that, we 

will continuously see a decrease in the pressure ratios till the point, if you continue to 

reduce back pressure to 0, the Mach number at the exit is still going to be Mach number 

is equal to 1, because it is a choked flow. There is no more change happening there. 

If you look at Mach number and pressure ratio plots, we started off at Mach number state 

1. If you look at the mass flow rate, it was equal to 0, because the pressure ratio, the back 

pressure was equal to stagnation pressure at the reservoir, there was no mass flow. Mass 

flow was equal to 0. As you start reducing the back pressure, there is an increase in Mach 

number till a point when it reaches state 3, which was the critical ratio that is, P star, 

when Mach number reaches maximum mass flow - that is its maximum value. If you 

reduce back pressure even below that, Mach number does not change. We get the same 

mass flow rate and which is the Mach number is equal to 1 at the throat; mass flow 

remains the same throughout for state 4 and 5 as well from state 2 3 4 and 5, the mass 

flow rate is the same. If you look at the exit to stagnation pressure ratio after state 3, it 

remains the same, because of the chocked condition and it does not change after the flow 

reaches the critical state. 
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This is how the variation of a flow would be through converging, diverging, nozzle. 

From the above, what we basically see is that when exit pressure is equal to back 

pressure. Exit pressure P e will be equal to back pressure, for back pressure greater than 

or equal to the critical pressure. Exit pressure will be equal to critical pressure for P b 

less than P star. 

So, for all back pressures lower than the critical pressure, the exit pressure will be equal 

to critical pressure. The Mach number is unity and mass flow rate is maximum, which is 

basically the chocked flow. Back pressure lower than the critical pressure cannot be 

sensed in the nozzle upstream flow and it does not affect the mass flow rate. 
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So, back pressure is basically relating the back pressure and exit pressure to the critical 

pressure as you change the back pressure values. Let us now look at the same scenario 

for a converging diverging nozzle. We have seen that the maximum Mach number that 

you can achieve in a converging nozzle is unity; for achieving supersonic Mach number 

you need a diverging section after the throat. 

So, a diverging section alone will not guarantee a supersonic flow. It will happen only as 

you change the back pressure accordingly. So, for back pressures which are different 

from what it should be you may not really achieve a supersonic flow. 
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Let us analyze a supersonic flow as we change the back pressure. This is a converging 

diverging nozzle. There is a converging section, a throat where the area minimum and 

the diverging section. 
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P naught is the pressure in the reservoir and P e is the exit pressure P b is the back 

pressure. Let us say, P b is currently higher than the stagnation pressure P naught. As you 

reduced it to P A, there is a flow which takes place. As you increase the P b, what 

basically happens or as you reduce back pressure, how it affects the flow? As you reduce 



back pressure which is still greater than the critical pressure, then, we get initially an 

increase, the static pressure reduces, and velocity will increase and then in the diverging 

section static pressure will increase. 

As you reach the critical pressure which is P star which happens when P is equal to P C 

or back pressure is equal to P C, the flow reaches its minimum static pressure here which 

is equal to P star. You get Mach number is equal to 1. But it does not achieve a 

supersonic flow subsequently, it becomes subsonic and the static pressure continues to 

rise. 

So, if you reduce the back pressure even further what happens is - after throat, the static 

pressure continues to drop up a point where there is a sudden increase in static pressure 

which is basically due to the occurrence of a shock. So, in the diverging section of the 

nozzle there is a shock; after which the flow become subsonic. We will discuss more 

about shocks in the next lecture. At the end exit of the shock, the flow becomes subsonic 

and static pressure again rises like in a subsonic flow. You have still not got a supersonic 

flow at the exit of the nozzle; it is still subsonic flow, because of the presence of a shock. 

If you reduce the flow back pressure further, we get a supersonic flow, because the shock 

which was there in the divergence section will continuously move outward as you reduce 

back pressure. Eventually the shock will be pushed out of the diffuser and the flow will 

become supersonic at the exit of the nozzle. 

If you look at the Mach number plot, for state A - there was no Mach number because 

there was no flow; for state B - the Mach number increases and then it decreases in the 

divergence section; for state C - it reaches Mach number equal to 1 because that is the 

critical condition and then it does not become supersonic. It again decelerates; then 

becomes subsonic. 

So, we have subsonic flow all the way here. At state D, the flow is supersonic after the 

throat, it continues so till this point after which there is a shock and because of the 

presence of a shock, the flow becomes subsonic and we still have a subsonic flow at the 

nozzle exit. If the back pressure is lower than what is happening at state D, then the 

shock continuously moves towards the exit and for all other states, which is E and F and 

G, we will have continuously have a supersonic flow all the way to the exit of the nozzle. 



We have now achieved a supersonic flow all the way up to the exit of the nozzle. This 

was possible only because the back pressure was adjusted to values which were lower 

than what we have seen here or lower than pressure at D that is P D and P E. For 

pressures lower than that, we get a supersonic flow cautiously all the way up to the exit 

of the nozzle. In the Mach number plot, we can see that it goes up to Mach 1 at the throat 

after which if the back pressure is not low enough, it can again become subsonic or if it 

is low up to a point, you may get a normal shock in the divergent section which means 

that you get a supersonic flow up to the shock and downstream of the shock it again 

becomes subsonic. If the back pressures are lower enough, then, we get supersonic flow 

all the way up to the exit of the nozzle. 

So, this is the variation of a supersonic flow or this is how you would achieve a 

supersonic flow by changing the exit back pressure. It is not just enough that you put a 

divergent section at the end from the throat and still get a supersonic flow; that will 

happen only if the exit back pressure is low enough. 
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Let me windup today’s lecture where we have discussed at least had a very quick 

introduction to some of these topics which are related to compressible flows. We had 

some discussions on one dimensional compressible flows, on stagnation properties, on 

the speed of sound and the Mach number. We have seen variation; we have derived an 

equation which relates the fluid velocity and Mach number with the flow area. We have 



also seen isentropic flow through nozzles. Two types of nozzles: converging nozzles and 

converging diverging nozzles. 

Our interaction for this was a very brief one. There are separate courses which are 

offered on compressible flows which are known as gas dynamics and so on. This is just 

to give you an idea of what is the importance or significance of compressible flows and 

why you need to understand stagnation properties and take due care in calculating 

properties which involve significant kinetic energies. 
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In the next lecture, we will continue our discussion on compressible flows. We will 

discuss little bit more on shock waves and expansion. We will discuss about normal 

shocks oblique shocks and Prandtl-Meyer expansion waves. We will be discussing about 

two duct flow cases; one is duct flow with heat transfer and negligible friction which is 

basically known as the Rayleigh flow. We will also discuss duct flow with friction but 

without heat transfer known as the Fanno flow. These are some of the topics which are in 

continuation with our discussion on compressible flow. We will take up a discussion 

during our next lecture. 


