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Hello and welcome to lecture 19 of this lecture series on introduction to aerospace 

propulsion. So, over the last several lectures we have had some discussions on 

fundamental aspects of thermodynamics like the laws of thermodynamics and properties 

and so on. Also, application of thermodynamic principles to actual applications like in 

cycle analysis and so on. For last 2, 3 lectures, we were discussing about the various 

power cycles which are used commonly; used in day-to-day applications. We had looked 

at the basic thermodynamic principles behind these cycles and also what are the small 

modifications that can be made which can lead to improvement in the efficiency of these 

cycles. So, these were some of the aspects that were discussed in the last few lectures. 

In today’s lecture what we are going to take up is a very different topic called… together 

it is not to do with thermodynamic cycle analysis and so on but, what we shall be 

discussing today are some very basic thermodynamic relations which are commonly used 

in analysis of engineering systems. And, some of these topics are very important in 

analysis of complex thermodynamic systems. So, let us take a look at what we shall be 

discussing in today’s lecture. 
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We shall be talking about what are known as the Helmholtz and the Gibbs functions and 

then, we shall be discussing about what are meant by Legendre transformations and as 

you apply Legendre transformation to certain equations we get what are known as the 

thermodynamic potentials. Then we will take up a very important set of relations known 

as the Maxwell relations who play a very significant in thermodynamic cycle analysis 

and otherwise, we will spend some time on discussing about the ideal gas equation of 

state and also subsequently, what is meant by the compressibility factor. 

We will then take up the other equations of state which are basically modifications of the 

ideal gas equation states to make it more realistic and towards the end of the lecture, we 

will be discussing about the Joule Thomson coefficient or the Joule Thomson effect 

which is basically applied for fluid flows through a throttling device or a throttling 

process. Now, if you recall several lectures earlier we had discussed about what are 

known as combination properties. Combination properties are those which are basically a 

set of different properties which put together have certain thermodynamic significance. 

One such property which we had discussed was known as the enthalpy. 

Enthalpy was defined as the sum of the internal energy plus the product of pressure and 

specific volume. So, specific internal energy u plus p v is equal to the specific enthalpy; 

so this was the basic definition of enthalpy which is basically a combination property. 
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Today, we will discuss about 2 more combination properties which are known as the 

Helmholtz function and the Gibbs function. So, let us take a look what these functions 

are and what their significance are. 

So we went to introduce 2 combination properties. First one is known as the Helmholtz 

function which we will define or denote by a letter a. Helmholtz function is basically an 

indication of the maximum work that can be extracted from a particular system. We have 

already discussed about what is the maximum work; what do you mean by useful work? 

what is known as irreversibility, etcetera and so, based on those definitions or concepts 

what we shall define today is what is known as the Helmholtz function. 

So Helmholtz function by definition is, it basically indicates the maximum work that can 

be obtained from a system. So, enthalpy is something which we have already discussed; 

it is a combination property; again, it indicates the work content or energy content of a 

system. 
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So, Helmholtz function by definition is u minus Ts where u is the internal energy and Ts 

is product of temperature - the absolute temperature and the entropy so this is by 

definition known as the Helmholtz function. 

So, what we can immediately see is that Helmholtz function basically gives us an idea of 

how much is the internal energy; what is the amount of maximum energy that you can 

get after you deduct the unavailable energy because, the product Ts is basically the 

measure of the unavailable energy or the irreversibility which we had defined earlier. So, 

difference between the internal energy and the unavailable energy is basically the 

Helmholtz function and so it gives us an idea about the maximum work that can be 

extracted from a particular system. 

The other combination property is known as the Gibbs function. Now, Gibbs function is 

again very similar to that of Helmholtz function but, it indicates the maximum useful 

work that can be obtained from a system. Unlike Helmholtz function which was just the 

indication of the maximum work, Gibbs function gives an idea of maximum useful work 

that can be extracted from a system. So Gibbs function g - it is denoted by letter g; g is 

equal to h minus Ts. So, here we are directing the irreversibility or the unavailable 

energy which is product of T, absolute temperature T and the entropy s from the 

enthalpy. 



 

 

So Gibbs function is less than enthalpy;. Helmholtz function is less than the internal 

energy. So these are 2 functions which we shall be using in today’s discussion. We will 

also be using, making use of the other equations which were known as the Tds equations 

we had derived earlier. We will also be using those Tds equations in some of the analysis 

today and so what we will do in fact, the 2 Tds equations which we had defined earlier 

and these 2 equations for the Helmholtz function and the Gibbs function all the 4 put 

together are actually known as the Gibbs equation. 

So, the Tds equation and the 2 equations we had defined today for one is for Helmholtz 

function; the other is for the Gibbs function; all of them put together are classified as the 

Gibbs equation. 
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So, two of the equations which we had derived earlier, one is du is equal to Tds minus 

Pdv and dh is equal to Tds plus vdP. So, these are 2 equations which we had at that time 

defined as the Tds relation. The two other Gibbs equations are a is equal to u minus Ts 

and g is equal to h minus Ts which is what we had defined today. 

Let us differentiate these 2 Gibbs equations. If you differentiate we get da is equal to du 

minus Tds minus sdT; similarly, dg is equal to dh minus Tds minus sdT. So these are 

now 4 differential equations one is in terms of the internal energy; one is in terms of the 

enthalpy and one is in terms of the Helmholtz function and the last one is in terms the 

Gibbs function. So these are the 4 different differential equations which we have which 



 

 

relates a set of properties of a system; set of important properties of a system like the 

temperature the pressure the entropy and volume and so on. So, these properties are 

related in terms of certain combination properties like enthalpy Helmholtz function and 

the Gibbs function. 

So what we will discuss next is that it is possible for us to express some of these 

functions or some of these terms in a, in the form of another set of terms by what are 

known as Legendre transformations. That is, you can make certain you can map or 

transform a function which is or a property which is a function of a set of properties to 

another set of properties by using what are known as the Legendre transformations. So, 

we will use Legendre transforms to basically transform or map a set of parameters or 

properties from one set to another which basically helps us in certain analysis which we 

shall be discussing why we are doing this transformation in detail little later on. 
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That once we do this transformation it makes the analysis of thermodynamic systems 

quite easy; so let us understand what are known as the Legendre transformations. We 

know that a simple compressible system which is basically a system which is completely 

defined from the state postulate which says that a simple compressible system can be 

completely defined or characterized by 2 independent and intensive properties. 

And so and… This is the state postulate and a simple compressible system is one which 

is divoid of any effects of magnetic effects or gravity and so on and so what we have said 



 

 

is that we can actually characterize a simple compressible system completely by using 

either energy which is internal energy u or entropy s and its volume. So, this is an 

example; of course, you can also characterize a simple compressible system by another 

set of properties. Just for an example we are going to take up a compressible system - 

simple compressible system which we shall characterize by its energy or entropy and the 

volume which means that u is a function of entropy s and specific volume v which means 

we have already seen the Tds equation du which basically relates the internal energy 

entropy and the volume. So, du is equal to Tds minus Pdv; so this is the Tds equation 

which we had defined such that for constant volume we get T is equal to du by or del u 

by del s for constant volume. That is if you look at the first Tds equation which is du is 

equal to Tds minus Pdv, this equation can also be rewritten for constant volume specific 

volume as T is equal to del u by del s where v is for constant v. Similarly, for constant s 

we get pressure P is equal to del u by del v at constant s. 

So, what it means is that if you take up, if you look at as basic Gibbs equation, one of the 

Gibbs equations and apply certain boundary conditions, you can express one of the 

properties in terms of the other two like temperature here has been expressed in terms of 

the energy and entropy P is in pressure is expressed in terms of energy and the volume. 

Similarly, let us look at what happens if you were to map the equation for entropy in the 

same fashion. 

Entropy as s is a function of internal energy and the volume. Let us look at another set of 

Tds; the same equation Tds equation in terms of entropy. So, Tds is equal to du plus Pdv 

which again by applying similar boundary conditions we get 1 by T is equal to del s by 

del u at constant v. That is if v is a constant we get 1 by T as del s divided by del u at 

constant v and similarly, the ratio pressure by temperature P by T is equal to del s by del 

v at constant u. That is, energy being constant you can express the properties pressure 

and temperature in terms of the change in entropy with reference to the specific volume 

the partial derivative of entropy with reference to the partial derivative of the specific 

volume keeping the energy internal energy constant. 

So, what we have basically done is that we can map certain parameters which could be 

like in the example we have discussed this parameter, set of parameters where the first 

example was energy. Energy was expressed or can be expressed in terms of entropy and 

volume and we can correspondingly map the properties like temperature or a pressure in 



 

 

the form of partial derivatives of some of the other properties like energy del u by t was 

equal to del u by del s at constant v and so on. So you can actually map certain properties 

important properties of a system in terms of partial derivatives of another set of 

properties of the same system. So, a Legendre transformation basically helps us in 

carrying this kind of transformation which will basically help us in certain analysis. 

One example I shall give you is that you are very much interested in determining the 

change in the entropy of a particular process but as we know entropy is not something 

which you can very easily measure. Entropy is a parameter which is very difficult to 

measure directly. There are no devices which can actually measure entropy as such but if 

you are able to express entropy in terms of parameters which can be easily measured or 

experimentally like temperature or pressure or volume then, it makes analysis a lot 

simpler because now you have entropy which has been expressed in terms of a set of 

another parameters like temperature or pressure and they can be measured quite easily. 

Whereas, entropy on the other hand is not something which you can measure very easily. 
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And so Legendre transformation helps us in expressing some such parameters in terms of 

another set of parameters which we can measure easily. So, that is one of the advantages 

of carrying out this kind of a transformation. If you look at the properties of the, or the 

advantages of Legendre transformation, Legendre transformation basically we know that 

any fundamental expression or a relation. 



 

 

We need to express it in terms of proper variables so the relation is complete which is 

why energy will always feature entropy. That is, if you are expressing energy internal 

energy as we did in the example which was expressed in terms of entropy s and volume v 

but you would rather have temperature as one of the proper variables because basically 

because entropy is not something that can be easily measured experimentally. Therefore, 

it is convenient to construct other related quantities in which entropy is a dependent 

variable instead of an independent variable because, if it is a dependent variable then you 

can actually express entropy in terms of other parameters which can be measured like 

temperature and pressure or volume. 

Whereas, if it happens to be an independent variable then it means that you will have an 

expression which relates energy in terms of entropy alone and that is something that you 

cannot measure easily and that is one of the advantages that you would want to carry out 

the Legendre transformation. Now, let us also take up an example of let us say the 

Helmholtz function; we have already had an example for the energy in terms of entropy 

and volume. 
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Let us also look at one example which has Helmholtz function. As the example now we 

have already defined the Helmholtz function also known as in some books, you will also 

see Helmholtz function being defined as Helmholtz free energy. So, Helmholtz free 

energy was defined as a is equal to u minus Ts. Now, if you look at a simple 



 

 

compressible system a is equal to u minus Ts can be written as if you differentiate da is 

equal to du minus sdT minus Pdv and so on and so, we had already differentiated this a 

few slides earlier. Now, this can be simplified as da is equal to minus sdT minus Pdv 

which comes from the Tds equation because da is equal to du minus Tds minus sdT du 

minus Tds is equal to minus Pdv from the first Tds equation. Therefore, da is equal to 

minus sdT minus Pdv. Again, if you were to apply the transformation here we get this 

equation, can be expressed in a different way as entropy s is equal to minus del a by del t 

at constant v. 

Similarly, pressure P is equal to minus del a by del v at constant T. now, what we have 

here is that entropy; it can actually be expressed as in terms of partial derivatives of the 

Helmholtz function or the Helmholtz free energy divided by with reference to 

temperature at constant specific volume. So, here we can, the state function now is much 

more amenable to express the experimental manipulation than the internal energy 

because energy or the entropy on the other hand is something that is quite difficult to 

measure and once you can express the state function in terms of parameters which can be 

easily measured, that makes thermodynamic analysis a lot simpler because you now have 

expressed the state variables in terms of parameters which can be easily measured. 

So that is why we would like to carry out such transformations for certain parameters 

which you would like to measure and therefore, you would like to express it in terms of 

certain functions or parameters which is much more experimentally amenable. So, we 

will now define what we are going to refer to as the thermodynamic potential so the 

derivatives that we get from these the transformations are basically referred to as the 

thermodynamic potential. 
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State functions which we obtained as a means of or as an outcome of the transformation 

of the Legendre transformation, are known as the thermodynamic potential. So, 

thermodynamic potentials examples of thermodynamic potentials are enthalpy; the 

entropy is also thermodynamic potential the Gibbs function or Gibbs free energy and the 

Helmholtz function or Helmholtz free energy. So, state functions which we obtain as a 

consequence of the Legendre transformation, we already seen what is the Legendre 

transformation which is a set of transformations which we can do to map a set of 

functions or parameters in terms of other functions or parameters which are much more 

easier to measure experimentally. So, as you transform or map these parameters from 

one set of one set to another; we can do that by using the Legendre transformation. So, 

the state functions or state variables that you get as a consequence of this Legendre 

transformation are referred to as the thermodynamic potential examples being enthalpy, 

Gibbs free energy, Helmholtz energy and so on. 

Now, why are they thermodynamic potential? Well, they are basically called 

thermodynamic potential because they look similar to or are analogous to the potential 

energy which we come across very frequently in mechanics. 

So, because of their similarity that is the similarity of these functions, the enthalpy, 

entropy, free energy and so on, because of their similarity to the potential energy which 

we come across in mechanics, these are known as the thermodynamic potential because 



 

 

these are potentials which come up in thermodynamic analysis and that is why they are 

called the thermodynamic potential because of this similarity. The other aspect of the 

potential is that each of these potentials provide a complete and equivalent description of 

the equilibrium states of the system; because they are all derived from a fundamental 

relation we have seen and the enthalpy is derived from a fundamental relation it relates 

basically the internal energy and product p v which is a very fundamental. 

All of these 3 parameters are fundamental parameters and so similarly, the free energy 

Gibbs free energy or Helmholtz energy they are all derived from certain fundamental 

relations and so each of these terms will provide a complete description of the 

equilibrium states of a system, because they all come from a or they are all derived from 

set of fundamental properties. Now, so we can actually map or carry out the Legendre 

transformation for different sets of parameters or state variables and derive the 

corresponding thermodynamic potentials for these kind of, these set of state variables. 

So, what I will do is I have already explained how to carry out these analyses for some 

examples like energy or entropy or the Helmholtz free energy. So, with that background 

you should be able to now calculate or carry out this transformation for other set of 

parameters or state variables. 
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So let us summarize. I would summarize the use of Legendre transformation for different 

state variables and the corresponding thermodynamic potentials. 



 

 

So in the table that is shown here, we have the state variables on the left hand side first 

column, this is the second column are the thermodynamic potentials. So, we have seen 

that from the set of state variables u and v that is energy and the specific volume we 

should be able to derive the thermodynamic potential which is entropy using the 

Legendre transformation; so this was one example which I had discussed. 

The other example I had discussed was the Helmholtz function. That is, you can derive 

the Helmholtz function which is basically the thermodynamic potential and 

correspondingly, we can carry out the Legendre transformation from the state variables 

for temperature absolute temperature T and the specific volume v. So, carrying using 

these two state variables you can carry out the Legendre transformation for the 

Helmholtz function. Similarly, we can carry out the transformations for Gibbs function 

in terms of the state variables temperature T and pressure P for Gibbs function which is g 

is equal to h minus Ts and for enthalpy, the state variables would be entropy s and the 

pressure P absolute pressure P where enthalpy is u plus P v. 

So, this is just to summarize how you can express different potential thermodynamic 

potentials as a consequence of using a set of state variables through the Legendre 

transformation. Thermodynamic potential basically helps us in understanding or equating 

certain potentials which we also say see in mechanics and so similarly, in 

thermodynamic analysis we come across certain potentials which are very similar or 

analogous to the potential energy of mechanics. 

Now that we have understood the Legendre transformation and how you can express 

certain parameters or functions in terms of a set of a different set of parameters which are 

more amenable to measurements like you can express entropy in terms other set of 

parameters and so on. So ,we shall now discuss about what are known the Maxwell 

equations. Maxwell relations or Maxwell equations are basically derived from the Gibbs 

equations. All the 4 Gibbs equations put together you can carry out the Legendre 

transformation and derive the Maxwell equation from all these 4 Gibbs equations. So, 

Maxwell relations basically relates some of the basic properties of a simple compressible 

system like the pressure, volume, temperature and entropy and we basically get partial 

derivatives of these properties in terms of the others and this is basically applied for 

simple compressible systems. But, as we will see little later on that we have we can also 

derive such equations for non-simple systems which involve electric or magnetic force 



 

 

etcetera and get the corresponding Maxwell’s relations for those systems. But, what we 

will discuss today is only for a simple compressible system that we express these basic 

properties like temperature, pressure, specific volume, entropy, etcetera in terms of 

partial derivatives. 
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So, Maxwell relations are basically equations that relate the partial derivative of 

properties like pressure, specific volume, temperature and entropy of a simple 

compressible system to each other that is you would have partial derivatives of pressure 

in terms of temperature and so on. 

Now, we will make use of the fact that all of these properties are basically because they 

are thermodynamic properties; they are exact differentials. So, these equations will be 

derived by using exactness of the differentials of these thermodynamic properties. 
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So, Maxwell relation basically can be obtained by applying these Legendre 

transformations to the 4 Gibbs equations and what were those 4 Gibbs equations? We 

had already discussed about the Tds equations. There are 2 Tds equations: one is in terms 

of energy u and the other in terms of enthalpy h. In addition to that the other 2 Gibbs 

equations one is for the Helmholtz function a and the other is for the Gibbs function g. 

So, the Gibbs equation can actually be simplified in by using the Tds equations which we 

get from which we get da is equal to minus sdT minus Pdv; so that is the third Gibbs 

equation and dg is equal to minus sdT plus Pdv. So, plus dg is equal to minus sdT plus 

vdP. Now, we have a set of 4 equations all of them put together are known as the Gibbs 

equations and all these equations if you see carefully they are all of this form which of 

the general form which is written here as dz is equal to Mdx plus Ndy. 

So, this is like a set of exact differentials and if you recall from mathematics which you 

might have studied earlier on such equations can actually be written in terms of the 

partial derivatives of these variables here. So, dz is equal to Mdx plus Ndy can be 

expressed as del M by del y at constant x is equal to del N by del x at y that is these 

functions that you see here in terms of M and N can be expressed as partial derivatives in 

this fashion. So, if you have an equation of this form dz is equal to Mdx plus Ndy then it 

also follows that del M by del y at x is equal to del N by del x at y. now, since all these 

equations that is the 4 Gibbs equations are in terms of properties of a system like energy 



 

 

enthalpy the Helmholtz function and the Gibbs function which all of which are properties 

of a system. 

They should have exact differentials which means all these 4 equations which we had 

discussed one is in terms an energy u second is in terms of enthalpy h then the Helmholtz 

function a and the Gibbs function g all these 4 equations only deal with properties of a 

system. Therefore, all of these equations should have exact differentials which means all 

these equations can be expressed in a fashion which was just discussed for a general 

equation dz is equal to Mdx plus Ndy where M del M by del y at x is equal to del N by 

del x del N by del y at x. 

So, if we were to express all those 4 equations, 4 Gibbs equations and apply the exact 

differentials for them because all these equations are in terms of properties of a system 

and if you were to do that then we get a set of four relations which are basically known 

as the Maxwell equations. So, if we take the equations one by one that is the first Tds 

equation apply the exact differential property for that second Tds equation and so on; 

then we get the Maxwell relations which are shown here. 
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So, applying this property of or identity of exact differentials to the Gibbs equation then 

we get from the first and from all the 4 Gibbs equations together we get del T by del v at 

s is equal to minus del P by del s at v. The second Maxwell relation is del T by del P at s 

is equal to del v by del s at P third Maxwell equation or Maxwell relation is del s by del v 



 

 

at T is equal to del P by del T at v and the last Maxwell relation del s by del P at T is 

equal to minus del v by del T at P so all these 4 equations are basically known as the 

Maxwell relations which are basically derived from the Gibbs equations and by applying 

the exact differentials to all these Gibbs equations. 

(Refer Slide Time: 31:33) 

 

Now, what is the significance of Maxwell relation? Now, that we have defined these 4 

equations in terms which are basically partial derivatives of the properties expressed in 

terms of one another. 

What is the significance of these Maxwell relations? Basically, Maxwell relations are 

important thermodynamic relations because they provide a means of measuring changes 

in entropy using variables which can be easily measured like pressure, volume, 

temperature, etcetera and the equations that we just discussed or the Maxwell relation 

which we had discussed is basically limited to simple compressible systems but we 

should be able to derive similar relations for non-simple systems which involve electric 

magnetic and other effects and so on. So, Maxwell relations which we discussed though 

were restricted to simple compressible systems which basically do not have effects of 

electric magnetic fields and so on. Such equations are also derived for equation or for 

systems which involve non simple effects like electric magnetic fields. 

So what we had discussed were so far were firstly the Gibbs and Helmholtz function then 

we discussed about the Legendre transformation which helps us in expressing one 



 

 

function in terms of set of another functions which can be easily measured and so on. 

And, Maxwell relation is basically a consequence of these transformation applied to the 

Gibbs equations - the 4 Gibbs equations. What we shall discuss next are the equations of 

states and we will start our discussion with discussing about the ideal gas equation of 

state and then we will see how you can modify these ideal gas equations of state to 

include real gas effects. 

Now, ideal gas equation of state is something which you are already familiar with and 

we have used this also in some of the numerical calculations or during our tutorials in 

some of the earlier lectures where we had assumed that air is an ideal gas for the range of 

temperatures for which we were carrying out the calculations. So, we had defined ideal 

gas equation there as Pv is equal to RT. So, that is basic ideal gas equation of state which 

expresses 2 properties which basically relates 3 properties of the ideal gas pressure, 

volume and temperature. 
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Then there is a constant which is known as the gas constant. Now, any equation which 

basis so, if you look at equation of state you can actually have any equation which relates 

the pressure, temperature and specific volume of a substance is basically known as an 

equation of state. Now, the simplest and the best known equation of state which we are 

aware of so far is the ideal gas equation of state which is Pv is equal to RT. 



 

 

Now, in this equation the pressure P is the absolute pressure; T is the absolute 

temperature; v is the specific volume and R is the gas constant for the particular gas we 

are interested in. For air, we can calculate gas constant by dividing the universal gas 

constant by the molecular weight of that particular gas. Now, the equation of state we 

had just discussed is meant for an ideal gas. Now, real gases can deviate substantially 

from this ideal gas nature depending upon the pressure and temperature that we are 

dealing with. So, depending upon that, the actual gas behavior can substantially different 

from that of an ideal gas. So is there a way or is there a method of accounting for this 

deviation of actual gas from the ideal gas behavior? 
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What we will do now is to define 1 parameter which can partly account for this deviation 

and this factor we shall define as what is known as the compressibility factor and so 

compressibility factor is basically defined as the ratio Pv by RT Z is defined as Pv by RT 

and this is basically known as the compressibility factor. This is primarily meant to 

account for the deviation of real gas effects from the ideal gas behavior. So, for an ideal 

gas obviously Z will be equal to 1 and for a real gas Z may be greater than 1 or it may be 

less than 1 depending on the pressure and temperature at which it is operating. 

So the farther away, Z is from unity whether it is less than 1 or greater than 1, the more is 

the deviation of the gas from the ideal gas behavior. That is, if Z is much less than 1 or Z 

is greater than 1 it means that, that particular gas is deviating from the ideal gas behavior 



 

 

by that much amount; because for an ideal gas, Z is equal to 1. So, compressibility factor 

is 1 parameter which can probably account for some of these T l gas effects and this is 

basically because real gases behave differently at different pressures and temperatures 

and so which means that, how do you account for this deviation if you have just 1 

parameter? 

In this case, what we do is that we normalize the pressures and temperatures with 

reference to the critical pressure and temperature of that particular gas and so, if we let us 

say normalize pressure with reference to the critical pressure, we get a normalized 

pressure which we shall now define as what is known as the reduced pressure. 
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Similarly, temperature divided by temperature at the critical state is defined as the 

reduced temperature. So, when we reduce the temperatures and pressures that is when we 

normalize pressures and temperature, then the behavior of different gases because now 

they have already normalized, is basically the same is more or less the same. I will show 

you one example where we will see that though they are not exactly the same they can, 

the behavior of different gases can be assumed to be falling the same trend. 

So, in order to account for the different behavior of the gases at different pressures and 

temperatures, we normalize them so the reduced pressure P R is equal to P divided by 

critical pressure and T R is equal to T divided by the critical temperature. 
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Now, if you do that basically what happens is that, the compressibility factor or the Z 

factor will now be approximately the same for all the gases at the same reduced 

temperatures and pressures and this is basically known as the principle of corresponding 

states. That is, once you normalize the pressure and temperature of a particular gas with 

reference to the critical values, then the compressibility factor for all the gases for the 

same set of reduced temperatures and pressures will be approximately the same. This is 

basically the principle of corresponding state. 
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We can now express the compressibility factor in terms of reduced pressures and reduced 

temperatures for a variety of gases and then we can, what we get is the generalized 

compressibility chart. So, if you look at the generalized compressibility chart which are 

basically meant to be used for all set of gases, all gases and then we shall be able to make 

certain conclusions based on the generalized compressibility chart. 

So, I have one example here of a compressibility chart which is plotted in terms of set of 

gases for methane, ethylene, ethane and so on under several gases which have been 

shown here on the y axis. We have the compressibility factor Z which is Pv by RT x axis 

is the reduced pressure and these graphs have been plotted for different reduced 

temperatures. 

So, what we can see is temperature ratio, temperature, reduced temperature varying from 

1 all the way up to 2 and so on. You will find in certain books these charts given for 

many more reduced temperatures all the way up to 5 or 6 and but the basic message is 

the same. That we shall discuss now. What you see here is that as the reduced pressures 

are lower, as it approaches 0, then the compressibility factor approaches 1; which means 

that as for very low pressures irrespective of what the temperature ratio is the 

compressibility factor approaches 1; which means all the gases will approach ideal gas 

behavior. 
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For certain reduced pressures you can say that you can see that the behavior and 

temperature ratios. The behavior is substantially different from that of ideal gas behavior. 

For example, for a reduced pressure of 1 and a reduced temperature of 1 the 

compressibility factor is 0.2 which means that it is substantially different from 1. It is 

substantially away from 1 which means that these, the gases at these reduced pressures 

and temperatures will deviate substantially from ideal gas behavior and so based on the 

general compressibility chart or generalized compressibility chart we can derive the 

following conclusions at very low pressures which we have seen where P R much less 

than 1 or is at as it approaches 1. Gas behavior is very similar to that of the ideal gas and 

regardless of temperature because all the temperature curves were merging towards Z 

equal to 1. 

At high temperatures T R greater than 2 ideal gas behavior can be assumed regardless of 

the pressure which you can see here in this diagram. That for as you increase the reduced 

temperature at 2 or beyond that it is the curve is the more or less flat which means that 

regardless of pressure. The gas behavior is like that of an ideal gas which occurs for 

reduced temperatures of 2 and beyond that and the deviation of a gas from the ideal gas 

behavior is highest in the vicinity of the critical point. That is around critical point when 

let us say pressure reduced pressure is 1 and the reduced temperature is 1 that is at the 

critical point temperatures and pressures the deviation of the gas from the ideal gas 

behavior is the highest which also is seen clearly from this generalized compressibility 

chart. 

So, these are some observations which we can derive when we look at the 

compressibility chart, that based on the compressibility chart you can actually see how 

an actual gas is with reference to an ideal gas in terms of the reduced temperatures and 

pressures. Finally, expressed in terms of the compressibility factor now what we had 

discussed, now was the equation of state as applied for an ideal gas. 

Now, there are certain limitations as you we have already seen that it is only for a certain 

set of temperatures and pressure ranges that the behavior of a certain gas can be 

approximated; to that of an ideal gas; but, what about the other temperatures and 

temperature pressures? So, the ideal gas equation of state has lot of limitations and 

therefore, over the years there have been several other forms or modifications of the ideal 



 

 

gas equation of state which are meant to account for some of these deficiencies of the 

equation of state. 
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So they have several equations which have been proposed. Some of them in fact, there 

are several of them. One of the earliest one is known as the Van der Waal’s equation. It 

is the one of the earliest equation for a long time that was used. Then, the Beattie-

Bridgeman equation is the one of the most popular equations and the one of the most 

recent and accurate equation is the Benedict-Webb-Rubin equation. 

We will only discuss the only the first 2 equations little detail because, the third equation 

is very complicated and I would limit my discussion to the Van der Waal’s equation and 

the Beattie-Bridgeman equation because these are the ones which have been used 

popularly. 
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So, Van der Waal’s equation basically includes the effect of intermolecular attractions 

which is expressed in terms of a by v squared, where a is a constant and also the volume 

occupied by the gas themselves. That is, there is a certain volume associated with the gas 

molecules. So, Van der Waal’s equation takes in to account these 2 effects; one is the 

intermolecular attraction forces and also the volume of the gas. So, the Van der Waal’s 

equation of state is p plus a by v square and v minus b where b is the volume of the 

molecules themselves; so that has been reduced from the volume itself. 
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So, p plus a by v square into v minus b is equal to RT. So, here these two constants need 

to be determined from the critical point data of that particular gas. So, this is the Van der 

Waal’s equation and the second equation which is more popularly used is the Beattie-

Bridgeman equation and this is expressed in terms of 5 experimentally determined 

constants. It is basically, the equation is P is equal to R u T by v bar square into 1 minus 

c by v by v bar T cube multiplied by v bar plus B minus A by v bar squared where A and 

B are expressed again in terms of constants. 

You can see that this equation is fairly quite complicated as compared to the simple ideal 

gas equation of state. However, this equation has been popularly used in getting much 

more better estimate of real gas behavior as compared to the ideal gas assumption. 
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Basically, the equation of state can be expressed as a series. So, Pv is equal to RT can be 

also expressed as P is equal to RT by v plus a T by v square plus b T by v cube and so 

on. So, this is a series; it can basically be expressed as a series and so this and similar 

other equations are basically referred to as the virial equations of state. 



 

 

(Refer Slide Time: 46:38) 

 

These coefficients that you get here a of T b of T and so on, are simply functions of 

temperatures. These are referred to as the virial coefficients. So, there are other several 

sets of equations which are basically expressing the ideal gas equation in terms of a 

series and these are known as the virial equations of state. 

So, these coefficients basically need to be determined either experimentally or 

theoretically from statistical mechanics and as the pressure approaches 0 you can see that 

virial coefficients will vanish and the equation will reduce to that of an a ideal gas 

equation of state. So, it is only accounting for as you deviate from the ideal gas behavior 

which could be at different higher pressures and so on. Then some of these equations 

will actually show up lot differences as compared to the ideal gas equation state and so 

similarly, in literature you would find there were, there are many more forms of the 

equation of state and many of them are very complicated and involve lot of other 

parameters and constants and coefficients which need to be determined experimentally. 

Some of these are used in modeling of real gas effects especially, when they involve 

certain combustion of gases, etcetera. The combustion products no longer can be treated 

as an ideal gas and so you need set of equations which can model these effects in an 

accurate manner and it is in these applications that many of these equations are used. 

But, for simple thermodynamic analysis, it is always a practice to assume air or even the 

combustion products as an ideal gas and carry out analysis based on that assumption. 



 

 

Now, we will now discuss another effect which is different from what we have already 

been discussing about. It is basically to do with flow passing through a constriction or a 

restricted passage or during a throttling process. Now, if you recall during our discussion 

on steady flow energy equation applied to such processes, we had derived that or we had 

understood that basically for throttling processes, the enthalpy remains a constant at that 

point. I also made a statement that during a throttling process, temperature may either be 

constant; it may increase or decrease and it depends upon a certain set of parameters. 

So, we will now see what is it that causes a change in a temperature; it could either 

decrease or increase depending upon the pressure. So, we will now see how we can 

estimate or determine changes in temperature during a throttling process. 

(Refer Slide Time: 49:06) 

 

Now, during a throttling process there is definitely a pressure drop associated with flow 

when it passes through devices like valves or capillary tubes and so on. So, enthalpy of a 

fluid remains a constant which is basically an outcome of the energy equation. Now, the 

temperature may remain same; it may increase or it could decrease depending upon the 

throttling process. 
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So the behavior of fluids during such flows is described by what is known as the Joule 

Thomson coefficient. So, let us what is meant by the Joules coefficient or joule Thomson 

coefficient. Joule Thomson coefficient mu is basically equal to partial derivative of 

temperature with pressure for constant enthalpy. 
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So del T by del P at constant h is Joule Thomson coefficient. So, it follows from this that 

if mu is less than 0 the temperature will increase. If mu is equal to 0 temperature remains 

constant and if mu is greater than 0, the temperature decreases. So, if you could calculate 



 

 

this gradient of temperature with pressure during a constant enthalpy process, then 

depending upon the gradient you can determine whether temperature will increase 

remain constant or decrease. 

So, let us look at one example here: we have flow passing through a porous plug here. 

The initial condition is P 1 and T 1 which is fixed and as you change the porosity, the 

downstream conditions can change; which means, if you start at the initial state here exit 

states which are shown by these black dots can be defined or can be varied depending 

upon the porosity here. 
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So, you may end up getting different exit states on the constant enthalpy line. Now, it 

means that there is certain point on the enthalpy equal to constant line where this slope is 

0 or where you have Joule Thomson coefficient equal to 0. So, the line that passes 

through all these 3 points is known as the inversion line and the temperature at a point 

where a constant enthalpy line intersects the inversion line is called the inversion 

temperature. 
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The slopes of h equal to constant line are negative at states to the right of the inversion 

line and positive to the left of the inversion line. So, that will be clear from this sketch. I 

have shown here illustratively that on this constant enthalpy lines plotted on the 

temperature pressure plot, all these lines are enthalpy equal to constant. So, at the point 

where slope is equal to 0 if you join all those points you get the inversion line and this 

temperature is known as the inversion temperature. 

So on left of this inversion line you have mu is equal mu is greater than 0 which means 

temperature decreases in this zone and if you are operating in the other zone where mu is 

less than 0, the temperature should increase which means that as you start throttling from 

here. If you are operating on the positive slope line then you end up getting reduced 

temperature and if you end up operating on the right hand side of the inversion line the 

temperature after the throttling process will increase. 

On a constant enthalpy line it is necessary. If your aim is to reduce temperature then it is 

necessary that you operate on the right hand side where the pose slope is positive and if 

you are operating on the right hand side you end up with getting an increase in 

temperature. So, this is basically the significance of the Joule Thomson effect or Joule 

Thomson coefficient which basically helps us in understanding that as you throttle. It is 

not necessary that temperature will always decrease because throttling devices are very 

commonly used in refrigeration cycles and air conditioning systems and so on. And, so if 



 

 

you need throttling to be effective you need to make sure that on the constant enthalpy 

line you are operating towards the left of the inversion line where the Joule Thomson 

coefficient is greater than 0 which means that you will end up getting a reduced 

temperature. But, if you are operating on the right hand side the temperature will 

increase so that that was about the Joule Thomson coefficient which describes throttling 

process in much more detail. So, let us recap what we had discussed in today’s lecture 

we are coming towards the end of this lecture. 
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In today’s lecture we had discussed about 2 new functions the Helmholtz and the Gibbs 

process which are combination properties like enthalpy we had discussed about Legendre 

transformations which help us in mapping set of parameters to another set of parameters 

then as a consequence of Legendre transformations we discussed about thermodynamic 

potentials and then the Maxwell relations which form the basic tool for analysis different 

thermodynamic systems. 

We discussed about the ideal gas equation of state and the real gas effects and how to 

account for real gas effects in term of the compressibility factor and also we discussed 

about the other equations of state like the Van der Waal’s equation and so on. 
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Subsequently, we discussed about the Joule Thomson coefficient which is basically 

applicable for throttling processes. So that brings us to the end of this lecture and in the 

next lecture what we shall do is we will have a tutorial session we shall be solving 

numerical problems related to gas power cycles from Otto diesel and dual cycles. 

We are will also be solving some problems from Brayton cycle and variants of Brayton 

cycle; like Brayton cycle with regeneration reheating and so on and then we will be 

discussing about the vapor power cycle. Basically, the Rankine cycle and possibly we 

will also solve some problems based on today’s lecture; that is the thermodynamic 

property relation. So, we will shall take up these during the next lecture which would be 

lecture 20. 


