Physics Grade 11

Experiment 2

Addition of Vectors by their Components

Time for activity 40-60 minutes

Resources

The Virtual Lab https://phet.colorado.edu/sims/html/vector-addition/latest/vector-addition en.html

Paper. Pencil, Calculator

Software Requirements

The new HTML5 sims can run on iPads and Chromebooks, as well as PC, Mac, and Linux systems.

iPad:

iOS 11+ Safari

iPad compatible sims

Android:

Not officially supported. If you are using the HTML5 sims on Android, we recommend using the latest version of Google Chrome.

Chromebook:

Latest version of Google Chrome

The HTML5 and Flash PhET sims are supported on all Chromebooks.

Chromebook compatible sims

Windows Systems:

Microsoft Edge and Internet Explorer 11, latest version of Firefox, latest version of Google Chrome.

Macintosh Systems:

macOS 10.9.5+, Safari 9+, latest version of Chrome.

Linux Systems:

Not officially supported. Please contact phethelp@colorado.edu with troubleshooting issues.

The Lab Environment

Spend a few minutes to understand/ explore the functionalities of the different tabs/panels.

Finding the Resultant - Algebraic Method

- 1. Drag two vectors \vec{a} and \vec{b} from the vector panel (2) to graph paper (1). And adjust their length and orientations.
- 2. Note down their magnitudes and the angles and record in the respective cells in the Table 2.
- 3. Calculate the x and y-components of the two vectors \vec{a} and \vec{b} , using $a_x = a\cos\theta$, $b_x = b\cos\theta$, $a_y = a\sin\theta$, $b_y = b\sin\theta$ and record the calculations in the respective cells.
- 4. Find the x-component of the resultant \vec{s} by

$$s_{x} = a_{x} + b_{x}$$

5. Find the y-component of the resultant \vec{s} by

$$s_y = a_y + b_y$$

6. Find the magnitude of the resultant using the formula

$$|s| = \sqrt{s_x^2 + s_y^2}$$

7. Find the angle that the resultant makes with the positive x-axis by using the formula

$$\theta = \tan^{-1} \left(\frac{s_y}{s_y} \right)$$

Verification

The calculated magnitude (from step 7) of the resultant vector \vec{s} must match with the observed value obtained from the graph paper (1).

The calculated angle (from step 8) of the resultant vector \vec{s} must match with the observed value obtained from the graph paper (1).

Physics Grade 11

Experiment 2

Addition of Vectors by their Components

Student's Name	Grade
----------------	-------

Observations and calculations

 Table 2: Addition of two vectors by Algebraic Method.

No of	First Vector \vec{a}		Second Vector $\vec{m b}$		Resultant $ec{s}$		
Obs					Calculations		Observed
	Magnitude	$ \vec{a} $ =	Magnitude	$\left \vec{b} \right =$	x-component	$s_x = a_x + b_x$	
	Angle	$\theta^{o} =$	Angle	$\theta^{\rm o} =$	y-component	$s_y = a_y + b_y$	
	x-component	$a_x = a\cos\theta$	x-component	$b_x = b\cos\theta$	Magnitude	$ s = \sqrt{s_x^2 + s_y^2}$	
	Y-component	$a_y = a \sin \theta$	Y-component	$b_y = b\sin\theta$	Angle	$\theta = \tan^{-1} \left(\frac{s_y}{s_x} \right)$	