PHET Force & Motion Sim Lab

Purpose: Explore Newton's Laws of Motion, friction, and what balanced/unbalanced forces do to motion

Part 1 Use the MOTON tab; CHECK ALL THE BOXES

Note: Use the pause button in the simulation to start/stop as you count time

Make a speed/time graph of motion from the simulation to compare acceleration as mass and applied force is changed.

Data Table: Motion

	Applied force: 250N Speed after 5 sec	Applied force: 250N Speed after 10 sec	Calculated acceleration (m/s/s)
Refrigerator (kg)			
Trashcan (kg)			
	Applied force: 500N Speed after 5 sec	Applied force: 500N Speed after 10 sec	Calculated acceleration (m/s/s)
Refrigerator (kg)			
Trashcan (kg)			

Analysis Questions: Motion Section

- 1. In your own words, describe what "Applied Force" is.
- 2. What happened to the pushing man when the speed became too high?
- 3. Once the pushing man stopped pushing, what happened to the object? How does this relate to the 1st law of motion & inertia?
- 4. If the applied force is the same, which has the higher rate of acceleration: a low mass object or a high mass object?
- 5. What does the slope of the line of the speed/time graph tell you?
- How was it possible for the trashcan and the refrigerator to accelerate at the same rate? Explain using F=ma.

Part 2 Use the FRICTION tab; CHECK ALL THE BOXES

Run the sim with the friction bar set in the middle. Use the pause and reset buttons as needed!

Data Table: Friction

Object (mass)	Minimum Applied Force (N) needed to cause the object <u>to begin moving</u>	Frictional Force (N) Acting on the Object <u>when it is at</u> <u>rest</u>	Frictional Force (N) Acting on the Object <u>when it is in</u> <u>motion</u>	Sum of Forces (Net Force to the right) to cause the object to begin moving	Sum of Forces (Net Force) needed to keep object moving <u>at a constant</u> <u>velocity once it</u> <u>starts moving</u>
Child (kg)					
Box (kg)					
Trashcan (kg)					
Refrigerator (kg)					

Analysis Questions: Friction Section

- 7. What is friction?
- 8. What did the object do when balanced forces acted on it? What did it do when unbalanced forces acted on it?
- 9. Which is higher: static friction or moving friction? Use data from one object as evidence.
- 10. Once the pushing man stopped pushing, what happened to the object? How does this relate to the 1st law of motion & inertia?
- 11. As the mass of an object increases, what happens to the amount of force needed to begin moving the object? Explain.
- 12. Do you have to continue applying force on an object to keep it moving? Explain why.
- 13. Run the sim with friction set to "none". Think about your answer to the last question- do you still have to continue applying force to an object to keep it moving? Explain using the idea of inertia.