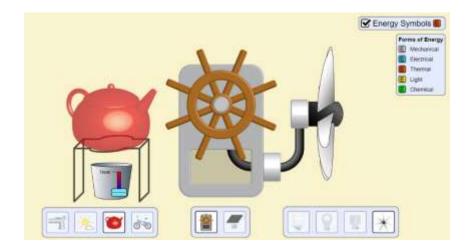

Name _			Perio	od	Date	
		Energy For				
can occı	ır betv	ion, you will be able to "see veen them. You are also ablocess of electrical energy ge	" several differer e to work with a	nt forms of system w	f energy and the	e changes (transfers) that
_		energy forms ". Click the f triangle button.	irst link which w	ill load the	e University of	Colorado's PHET page.
		on the "Energy Systems" to so the different types of end				
Gettin	g Far	niliar With The Option	<u>1S</u>			
		experiment with the different to play with – then complete			utput options –	there are many
		n energy sources (input) car ?			•	and generate electrical
2. V	Which	energy sources (input) cau	se the solar pane	els to gene	rate electrical e	nergy?
3. V	Which	energy output objects world	k with the turbine	e?		
		energy output objects world				
5. ·	w nat r	nappens to the amount of ele	Specify "a little	Ū		
	a.	Faucet is on high?	эрссіју и ши	ic or a	101	
		Faucet is on low?				
	c.	There are no clouds?				
	d.	There are lots of clouds?				
	e.	Low heat on the kettle?				
	f.	High Heat on the kettle?				
	g.	The girl pedals slowly?				
	h.	The girl pedals quickly?				
6.	Explai	in why the cyclist must be fe	ed in order to con	tinue to p	edal?	
7. 7	——— Гhe La	nw of Conservation of Energ	y states that			

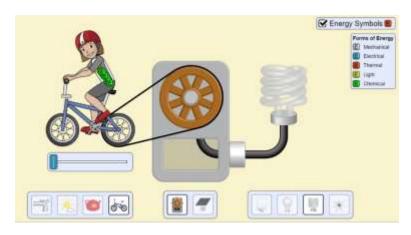
Exploring Energy Transfer

Set up your system as shown in the picture. Let it run for a while and then complete the sentences using the energy symbols to help you "see" the flow of the energy within each system. HINT: **Make sure to check the Energy Symbols box**. Use the color of the "E" boxes to know what form the energy is.

8. Turbine Moved by Medium Water Flow from Faucet With A Water Heater System


In this system,kinetic	energy from the moving water of the faucet turns the turbine. The		
energy of the sp.	inning turbine generates	_ energy which is	
transformed into	energy that causes the temperature of the wate	r to increase. The water	
then becomes steam and gives off more	energy into the atmosph	here.	

9. Solar Panel in No Cloud Cover With An Incandescent Light Bulb System


In this system,	energy from the sunlight causes the solar panel to create
	energy which flows into the incandescent light bulb. In the light bulb, the
	energy is transformed into two different types of energy:
energy and	energy.

10. Turbine Moved by Steam from Medium Heat Kettle With A Fan

In this system,	energy from the flames of the fire t	ransfer energy to the kettle causing
the liquid to become steam. The therr	mal energy of the steam spins the turb	bine (energy)
which generates	energy that is used to operate the	fan. The moving electric motor and
the spinning fan blades are a form of	energy.	After running for a while, the fan
becomes hot to the touch, and ever so	often releases	energy into the air.
Note Another form of energy is rele	eased from the kettle. What is it?	

11. Turbine Moved by Cyclist Pedaling at Medium Speed With A Fluorescent Light Bulb System

In this system,	energy from the cyclist	is converted to a lot of
	energy and a little bit of	energy. The
	energy from the turning bicycle wheel	spins the turbine which generates
	energy. The fluorescent light bulb con	verts this energy into two new forms: a
lot of	energy and very little	energy.

12.	Switch out the fluorescent bulb (curly one) with the incandescent bulb (rounded) and observe the energy output. What do you notice about the difference in the energy and output of these two bulbs?
	In your opinion, which light bulb is more efficient?
	Explain how you know this.
13.	What common form of energy (not including kinetic or potential) is not included in the "Energy Symbols" key that would normally be present in these examples?
14.	Look carefully at each of the four systems shown above. Knowing what we have discussed about energy conversions, identify (list) at least three different places where this form of energy (sound) should be "produced".
15.	In the space below, explain why this simulation is a good way to illustrate the Law of Conservation of Energy. <i>Use a specific example to support your answer</i> .
16.	Application question: In Lancaster county, Pennsylvania, it is common for members of the Amish community to use wind mills to pump water from underground to fill a tank for drinking water. The wind causes the turbine blades to spin, rotating a shaft, which is transferred through some gears to operate a pump, which pumps water up from deep below the ground to fill an above ground tank. Identify the energy conversions happening at each step below.
A.	Wind blows (energy)
B.	causing the turbine to turn, rotating shaft works pump(energy)
C.	Motion of water moving up from well (energy)
D.	Water in tank which is positioned 5 feet above the ground level (potential energy)