PIET MATH SIM ALIGNMENT BY GRADE AND CCSS

Grade 6

AREA BUILDER

Area Model Algebra

CCSS.MATH.CONTENT.6.G.A.1

Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.

CCSS.MATH.CONTENT.6.NS.B.4

Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. *For example, express 36* + 8 as 4(9 + 2)

CCSS.MATH.CONTENT.6.EE.A.3

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3(2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

CCSS.MATH.CONTENT.6.EE.A.4

Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.

AREA MODEL MULTIPLICATION

CCSS.MATH.CONTENT.6.NS.B.4

Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. *For example, express 36* + 8 as 4(9 + 2)

EQUALITY EXPLORER EQUALITY EXPLORER: BASICS

CCSS.MATH.CONTENT.6.EE.B.5

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. CCSS.MATH.CONTENT.6.EE.B.6

Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

EXPRESSION EXCHANGE

CCSS.Math.Content.6.EE.A.2

Write, read, and evaluate expressions in which letters stand for numbers.

CCSS.Math.Content.6.EE.A.2.b

Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two factors; view (8 + 7) as both a single entity and a sum of two terms.

CCSS.Math.Content.6.EE.A.3

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3(2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

CCSS.Math.Content.6.EE.A.4

Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.

PLINKO PROBABILITY

CCSS.Math.Content.6.SP.A.2

Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

CCSS.Math.Content.6.SP.B.4

Display numerical data in plots on a number line, including dot plots, histograms, and box plots.

CCSS.Math.Content.6.SP.B.5.c

Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.

PROPORTION PLAYGROUND

CCSS.MATH.CONTENT.6.NS.B.4

Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12.

CCSS.Math.Content.6.RP.A.1

Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."

CCSS.Math.Content.6.RP.A.3

Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.

UNIT RATES

CCSS.Math.Content.6.RP.A.2

Understand the concept of a unit rate a/b associated with a ratio a:b with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar." "We paid \$75 for 15 hamburgers, which is a rate of \$5 per hamburger."

CCSS.Math.Content.6.RP.A.3

Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. CCSS.Math.Content.6.RP.A.3.b

Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?

CCSS.Math.Content.6.RP.A.3.d

Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

Grade 7

AREA BUILDER

CCSS.MATH.CONTENT.3.MD.C.7

Relate area to the operations of multiplication and addition. CCSS.MATH.CONTENT.3.MD.C.7.A

Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.

CCSS.MATH.CONTENT.3.MD.C.7.B

Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.

CCSS.MATH.CONTENT.3.MD.C.7.C

Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths *a* and b + c is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning.

CCSS.MATH.CONTENT.3.MD.C.7.D

Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems

AREA MODEL ALGEBRA

CCSS.MATH.CONTENT.7.NS.A.2.C

Apply properties of operations as strategies to multiply and divide rational numbers.

CCSS.MATH.CONTENT.7.EE.A.1

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

EQUALITY EXPLORER

EQUALITY EXPLORER: BASICS

CCSS.MATH.CONTENT.7.EE.B.3

Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. *For example: If a woman making* \$25 *an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or* \$2.50, *for a new salary of* \$27.50. *If you want to place a towel bar* 9 3/4 *inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about* 9 *inches from each edge; this estimate can be used as a check on the exact computation.*

PLINKO PROBABILITY

CCSS.Math.Content.7.EE.B.4

Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

CCSS.Math.Content.7.SP.C.5

Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. CCSS.Math.Content.7.SP.C.6

Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. *For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.*

PROPORTION PLAYGROUND

CCSS.Math.Content.7.RP.A.2.a

Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.

Grade 8

AREA MODEL ALGEBRA

CCSS.MATH.CONTENT.8.EE.C.7.B

Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

EQUALITY EXPLORER EQUALITY EXPLORER: BASICS

CCSS.Math.Content.8.EE.C.7 Solve linear equations in one variable. CCSS.Math.Content.8.EE.C.7.a

Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers).

CCSS.Math.Content.8.EE.C.8

Analyze and solve pairs of simultaneous linear equations.

FUNCTION BUILDER

CCSS.Math.Content.8.F.A.1

Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

CCSS.Math.Content.8.F.A.2

Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). *For example, given a linear function represented by a table* of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

FUNCTION BUILDER: BASICS

CCSS.Math.Content.8.F.A.1

Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

GRAPHING LINES

CCSS.MATH.CONTENT.8.EE.B.5

Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. CCSS.Math.Content.8.EE.B.6

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.

GRAPHING SLOPE-INTERCEPT

CCSS.Math.Content.8.F.A.3

Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

LEAST-SQUARES REGRESSION

CCSS.MATH.CONTENT.8.SP.A.1

Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

CCSS.MATH.CONTENT.8.SP.A.2

Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.

CCSS.MATH.CONTENT.8.SP.A.3

Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.